A human-based technique for measuring video data similarity

The increasing use of multimedia streams nowadays necessitates the development of efficient and effective methodologies for manipulating databases in storing them. Moreover, content-based access to multimedia databases requires in its retrieval stage to effectively asses the similarity of video data. This work proposes a new technique for measuring video data similarity that attempts to model some of the factors that reflect human notion in evaluating video data similarity. This model presents one step towards designing intelligent content-based video retrieval systems capable of measuring the similarity among video clips in a way similar to what humans do. The performance of the proposed model was tested where the system yielded very satisfactory values of recall and precision under various testing scenarios.

[1]  Thomas S. Huang,et al.  Relevance feedback in content-based image retrieval: some recent advances , 2002, Inf. Sci..

[2]  R. Brunelli,et al.  A Survey on the Automatic Indexing of Video Data, , 1999, J. Vis. Commun. Image Represent..

[3]  Joan L. Mitchell,et al.  JPEG: Still Image Data Compression Standard , 1992 .

[4]  Tat-Seng Chua,et al.  An integrated color-spatial approach to content-based image retrieval , 1995, MULTIMEDIA '95.

[5]  Shih-Fu Chang,et al.  A fully automated content-based video search engine supporting spatiotemporal queries , 1998, IEEE Trans. Circuits Syst. Video Technol..

[6]  Waleed Farag,et al.  Techniques for Indexing MPEG Compressed Videos , 2002 .

[7]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[8]  Yueting Zhuang,et al.  Content-based video similarity model , 2000, ACM Multimedia.

[9]  K. Selçuk Candan,et al.  Similarity-based retrieval of temporal documents , 2000, MULTIMEDIA '00.

[10]  Huitao Luo,et al.  Designing an interactive tool for video object segmentation and annotation: demo abstract , 1999, ACM Multimedia.

[11]  Waleed Farag,et al.  A New Paradigm for Detecting Scene Changes on MPEG Compressed Videos , 2001 .

[12]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[13]  Atsuo Yoshitaka,et al.  A Survey on Content-Based Retrieval for Multimedia Databases , 1999, IEEE Trans. Knowl. Data Eng..

[14]  Thomas S. Huang,et al.  Relevance feedback techniques in interactive content-based image retrieval , 1997, Electronic Imaging.

[15]  Shingo Uchihashi,et al.  Video Manga: generating semantically meaningful video summaries , 1999, MULTIMEDIA '99.

[16]  Sanjeev R. Kulkarni,et al.  A framework for measuring video similarity and its application to video query by example , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[17]  Tom Minka,et al.  Vision texture for annotation , 1995, Multimedia Systems.

[18]  Simone Santini,et al.  Similarity Measures , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[20]  Hussein M. Abdel-Wahab,et al.  A new paradigm for analysis of MPEG compressed videos , 2002, J. Netw. Comput. Appl..

[21]  Ryoji Kataoka,et al.  Content-based retrieval applications on a common database management system , 2001, MULTIMEDIA '01.

[22]  Yueting Zhuang,et al.  A new approach to retrieve video by example video clip , 1999, MULTIMEDIA '99.

[23]  Hussein M. Abdel-Wahab,et al.  Adaptive Key Frames Selection Algorithms for Summarizing Video Data , 2002, JCIS.

[24]  Avideh Zakhor,et al.  Video similarity detection with video signature clustering , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[25]  Shingo Uchihashi,et al.  MBase: indexing, browsing, and playback of media at FXPAL , 1999, MULTIMEDIA '99.

[26]  Avideh Zakhor,et al.  Efficient video similarity measurement and search , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).