GRANGER CAUSALITY AND STRUCTURAL CAUSALITY IN CROSS-SECTION AND PANEL DATA

Granger noncausality in distribution is fundamentally a probabilistic conditional independence notion that can be applied not only to time series data but also to cross-section and panel data. In this paper, we provide a natural definition of structural causality in cross-section and panel data and forge a direct link between Granger (G–) causality and structural causality under a key conditional exogeneity assumption. To put it simply, when structural effects are well defined and identifiable, G–non-causality follows from structural noncausality, and with suitable conditions (e.g., separability or monotonicity), structural causality also implies G–causality. This justifies using tests of G–non-causality to test for structural noncausality under the key conditional exogeneity assumption for both cross-section and panel data. We pay special attention to heterogeneous populations, allowing both structural heterogeneity and distributional heterogeneity. Most of our results are obtained for the general case, without assuming linearity, monotonicity in observables or unobservables, or separability between observed and unobserved variables in the structural relations.

[1]  Maximilian Kasy,et al.  IDENTIFICATION IN TRIANGULAR SYSTEMS USING CONTROL FUNCTIONS , 2010, Econometric Theory.

[2]  Geoffrey J. McLachlan,et al.  Mixture models : inference and applications to clustering , 1989 .

[3]  T. Haavelmo The Statistical Implications of a System of Simultaneous Equations , 1943 .

[4]  H. White,et al.  Nonparametric Identification in Nonseparable Panel Data Models with Generalized Fixed Effects , 2009 .

[5]  Jean-Pierre Florens,et al.  Non Causality in Continuous Time , 1996 .

[6]  A. Chesher Identification in Nonseparable Models , 2003 .

[7]  Hyungsik Roger Moon,et al.  PANEL DATA MODELS WITH FINITE NUMBER OF MULTIPLE EQUILIBRIA , 2009, Econometric Theory.

[8]  Kirill S. Evdokimov Identification and Estimation of a Nonparametric Panel Data Model with Unobserved Heterogeneity ∗ , 2009 .

[9]  Halbert White,et al.  Causality, Conditional Independence, and Graphical Separation in Settable Systems , 2012, Neural Computation.

[10]  K. Hoover,et al.  Causality in Economics and Econometrics , 2006 .

[11]  Halbert White,et al.  Settable Systems: An Extension of Pearl's Causal Model with Optimization, Equilibrium, and Learning , 2009, J. Mach. Learn. Res..

[12]  G. Imbens,et al.  Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score , 2000 .

[13]  J. Hahn On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects , 1998 .

[14]  Martin Browning,et al.  Heterogeneity in Dynamic Discrete Choice Models , 2010 .

[15]  C. Granger Some recent development in a concept of causality , 1988 .

[16]  Jeffrey M. Wooldridge,et al.  The Initial Conditions Problem in Dynamic, Nonlinear Panel Data Models with Unobserved Heterogeneity , 2002 .

[17]  P. Phillips,et al.  Identifying Latent Structures in Panel Data , 2014 .

[18]  Rosa L. Matzkin Nonparametric Estimation of Nonadditive Random Functions , 2003 .

[19]  Rosa L. Matzkin,et al.  Cross Section and Panel Data Estimators for Nonseparable Models with Endogenous Regressors , 2005 .

[20]  Clive W. J. Granger,et al.  Some recent developments in a concept of causality , 2001 .

[21]  M. Lechner The Relation of Different Concepts of Causality Used in Time Series and Microeconometrics , 2010 .

[22]  J. Florens,et al.  A Note on Noncausality , 1982 .

[23]  Elena Manresa,et al.  Grouped Patterns of Heterogeneity in Panel Data , 2015 .

[24]  G. Imbens,et al.  Identification and Estimation of Triangular Simultaneous Equations Models without Additivity , 2002 .

[25]  Halbert White,et al.  Approximate Nonlinear Forecasting Methods , 2006 .

[26]  Serena Ng,et al.  Estimation of Panel Data Models with Parameter Heterogeneity when Group Membership is Unknown , 2007 .

[27]  H. White,et al.  A NONPARAMETRIC HELLINGER METRIC TEST FOR CONDITIONAL INDEPENDENCE , 2008, Econometric Theory.

[28]  H. White,et al.  A FLEXIBLE NONPARAMETRIC TEST FOR CONDITIONAL INDEPENDENCE , 2013, Econometric Theory.

[29]  D. Rubin Estimating causal effects of treatments in randomized and nonrandomized studies. , 1974 .

[30]  Gary Chamberlain,et al.  The General Equivalence of Granger and Sims Causality , 1982 .

[31]  H. White Identi cation and Identi cation Failure for Treatment E ¤ ects using Structural Systems , 2011 .

[32]  Martin Browning,et al.  Heterogeneity and Microeconometrics Modelling , 2006 .

[33]  J. Hausman,et al.  Estimating a semi-parametric duration model without specifying heterogeneity , 2005 .

[34]  Guido W. Imbens,et al.  EFFICIENT ESTIMATION OF AVERAGE TREATMENT EFFECTS , 2003 .

[35]  Christian Hansen,et al.  Grouped effects estimators in fixed effects models , 2016 .

[36]  Jeffrey M. Wooldridge,et al.  Solutions Manual and Supplementary Materials for Econometric Analysis of Cross Section and Panel Data , 2003 .

[37]  A. C. van der Klauw,et al.  Nonparametric identification , 2020, Modeling, Identification and Simulation of Dynamical Systems.

[38]  O. Linton,et al.  Testing Conditional Independence Restrictions , 2014 .

[39]  H. White,et al.  Testing Conditional Independence Via Empirical Likelihood , 2014 .

[40]  J. Heckman,et al.  Econometric Causality , 2008 .

[41]  M. Harding,et al.  A Bayesian Semiparametric Competing Risk Model with Unobserved Heterogeneity , 2014 .

[42]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[43]  D. Rubin Direct and Indirect Causal Effects via Potential Outcomes * , 2004 .

[44]  Guido M. Kuersteiner,et al.  Granger-Sims causality , 2010 .

[45]  C. Granger Investigating causal relations by econometric models and cross-spectral methods , 1969 .

[46]  G. Chamberlain Multivariate regression models for panel data , 1982 .

[47]  C. Granger Testing for causality: a personal viewpoint , 1980 .

[48]  H. White,et al.  Identification and Identification Failure for Treatment Effects Using Structural Systems , 2013 .

[49]  P. Holland Statistics and Causal Inference , 1985 .

[50]  Jean-Pierre Florens,et al.  Some technical issues in defining causality , 2003 .

[51]  A. Dawid Conditional Independence in Statistical Theory , 1979 .

[52]  W. Newey,et al.  Estimating vector autoregressions with panel data , 1988 .

[53]  Lars Peter Hansen,et al.  Advances in Economics and Econometrics: Theory and Applications, Eighth World Congress , 2003 .

[54]  Kyungchul Song Testing Conditional Independence via Rosenblatt Transforms , 2007, 0911.3787.

[55]  H. White,et al.  A Consistent Characteristic-Function-Based Test for Conditional Independence , 2003 .

[56]  Gary Chamberlain,et al.  Chapter 22 Panel data , 1984 .

[57]  Xun Lu,et al.  Linking Granger Causality and the Pearl Causal Model with Settable Systems , 2009, NIPS Mini-Symposium on Causality in Time Series.

[58]  Wenceslao González Manteiga,et al.  Significance testing in nonparametric regression based on the bootstrap , 2001 .

[59]  M. Lechner Identification and Estimation of Causal Effects of Multiple Treatments Under the Conditional Independence Assumption , 1999, SSRN Electronic Journal.

[60]  James Heckman,et al.  CAUSAL ANALYSIS AFTER HAAVELMO , 2013, Econometric Theory.

[61]  Ronald W. Shephard,et al.  A Mathematical Theory of the Incidence of Taxation , 1944 .

[62]  J. Angrist,et al.  Causal Effects of Monetary Shocks: Semiparametric Conditional Independence Tests with a Multinomial Propensity Score , 2011, Review of Economics and Statistics.

[63]  E. Dumitrescu,et al.  Testing for Granger Non-causality in Heterogeneous Panels , 2012 .

[64]  C. Hsiao Analysis of Panel Data , 1989 .

[65]  M. Pesaran,et al.  Testing for unit roots in heterogeneous panels , 2003 .

[66]  Joshua D. Angrist,et al.  Mostly Harmless Econometrics: An Empiricist's Companion , 2008 .

[67]  Yixiao Sun Estimation and Inference in Panel Structure Models , 2005 .

[68]  S. Taylor Forecasting Economic Time Series , 1979 .

[69]  G. Imbens The Role of the Propensity Score in Estimating Dose-Response Functions , 1999 .

[70]  Andrew Chesher,et al.  Nonparametric Identification under Discrete Variation , 2003 .

[71]  O. Linton,et al.  Conditional Independence Restrictions: Testing and Estimation , 1996 .

[72]  C. Sims Money, Income, and Causality , 1972 .

[73]  E. Mammen,et al.  Identification and Estimation of Local Average Derivatives in Non-Separable Models Without Monotonicity , 2009 .

[74]  Xiaotong Shen,et al.  Inference After Model Selection , 2004 .

[75]  P. Deb,et al.  Finite Mixture for Panels with Fixed Effects , 2013 .

[76]  L. Blume,et al.  The New Palgrave Dictionary of Economics, 2nd edition , 2008 .

[77]  Diana Weinhold,et al.  Causality Tests for Cross‐Country Panels: a New Look at FDI and Economic Growth in Developing Countries , 2001 .

[78]  H. White,et al.  Testing a conditional form of exogeneity , 2010 .

[79]  Guido W. Imbens,et al.  The Interpretation of Instrumental Variables Estimators in Simultaneous Equations Models with an Application to the Demand for Fish , 2000 .

[80]  Halbert White,et al.  Causal Diagrams for Treatment Effect Estimation with Application to Efficient Covariate Selection , 2011, Review of Economics and Statistics.

[81]  Jennifer L. Castle,et al.  The Methodology and Practice of Econometrics: A Festschrift in Honour of David F. Hendry , 2009 .

[82]  R. H. Strotz,et al.  RECURSIVE VS. NONRECURSIVE SYSTEMS: AN ATTEMPT AT SYNTHESIS (PART I OF A TRIPTYCH ON CAUSAL CHAIN SYSTEMS) , 1960 .

[83]  T. Haavelmo,et al.  The probability approach in econometrics , 1944 .

[84]  N. Weber,et al.  A Partially Heterogeneous Framework for Analyzing Panel Data , 2015 .

[85]  T. Koopmans Statistical inference in dynamic economic models , 1951 .

[86]  H. White,et al.  Granger Causality and Dynamic Structural Systems , 2010 .

[87]  H. White,et al.  An Extended Class of Instrumental Variables for the Estimation of Causal Effects , 2011 .

[88]  H. Theil Introduction to econometrics , 1978 .

[89]  Enno Mammen,et al.  Identification of marginal effects in nonseparable models without monotonicity , 2007 .

[90]  D. Rubin,et al.  The central role of the propensity score in observational studies for causal effects , 1983 .

[91]  H. White Retrospective Estimation of Causal E¤ects Through Time , 2007 .

[92]  B. Lindsay Mixture models : theory, geometry, and applications , 1995 .

[93]  Markku Rahiala,et al.  Panel Data , 2011, International Encyclopedia of Statistical Science.

[94]  S. Lohr,et al.  Sampling: Design and Analysis , 1999 .

[95]  J. Pearl TRYGVE HAAVELMO AND THE EMERGENCE OF CAUSAL CALCULUS , 2013, Econometric Theory.

[96]  Jean-Pierre Florens,et al.  Noncausality in Continuous Time , 1996 .