Minding the gap: Range size and economic use drive functional trait data gaps in the Atlantic forest

[1]  M. Pärtel,et al.  Fine-root traits in the global spectrum of plant form and function , 2021, Nature.

[2]  W. Ulrich,et al.  Ecosystem functions in degraded riparian forests of southeastern Kenya , 2021, Ecology and evolution.

[3]  Vanessa M. Adams,et al.  A guide to using species trait data in conservation , 2021, One Earth.

[4]  M. Marques,et al.  The Atlantic Forest: An Introduction to the Megadiverse Forest of South America , 2021 .

[5]  M. Marques,et al.  Tree Diversity in the Brazilian Atlantic Forest: Biases and General Patterns Using Different Sources of Information , 2021 .

[6]  Nadejda A. Soudzilovskaia,et al.  Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. , 2020, The New phytologist.

[7]  P. Brancalion,et al.  Functional traits and ecosystem services in ecological restoration , 2020, Restoration Ecology.

[8]  A. Paviolo,et al.  Handling missing values in trait data , 2020, Global Ecology and Biogeography.

[9]  T. Perez,et al.  Herbarium-based measurements reliably estimate three functional traits. , 2020, American journal of botany.

[10]  M. Rillig,et al.  Root trait responses to drought are more heterogeneous than leaf trait responses , 2020, Functional Ecology.

[11]  W. Ulrich,et al.  Ecosystem functions in natural and anthropogenic ecosystems across the East African coastal forest landscape , 2020, Biotropica.

[12]  Denis Bastianelli,et al.  TRY plant trait database - enhanced coverage and open access. , 2019, Global change biology.

[13]  A. Zanne,et al.  What we (don't) know about global plant diversity , 2019, Ecography.

[14]  L. Beaumont,et al.  Taxonomic shortfalls in digitised collections of Australia’s flora , 2019, Biodiversity and Conservation.

[15]  P. Reich,et al.  When Do Ecosystem Services Depend on Rare Species? , 2019, Trends in ecology & evolution.

[16]  Alexander Christian Vibrans,et al.  Towards the Fulfillment of a Knowledge Gap: Wood Densities for Species of the Subtropical Atlantic Forest , 2019, Data.

[17]  E. Meron,et al.  The relative contributions of functional diversity and functional identity to ecosystem function in water‐limited environments , 2019, Journal of Vegetation Science.

[18]  Adalberto J. Santos,et al.  Modelling Highly Biodiverse Areas in Brazil , 2019, Scientific Reports.

[19]  Guiyao Zhou,et al.  Drought-induced changes in root biomass largely result from altered root morphological traits: Evidence from a synthesis of global field trials. , 2018, Plant, cell & environment.

[20]  Elvire Bestion,et al.  Changes in temperature alter the relationship between biodiversity and ecosystem functioning , 2018, Proceedings of the National Academy of Sciences.

[21]  P. D. M. Júnior,et al.  A gap in the woods: Wood density knowledge as impediment to develop sustainable use in Atlantic Forest , 2018, Forest Ecology and Management.

[22]  Jeremy W. Lichstein,et al.  Shifts in tree functional composition amplify the response of forest biomass to climate , 2018, Nature.

[23]  Brian J. McGill,et al.  The bien r package: A tool to access the Botanical Information and Ecology Network (BIEN) database , 2017 .

[24]  M. Marques,et al.  Planning for conservation and restoration under climate and land use change in the Brazilian Atlantic Forest , 2017 .

[25]  M. Cadotte,et al.  Functional traits explain ecosystem function through opposing mechanisms. , 2017, Ecology letters.

[26]  B. A. Hawkins,et al.  Structural bias in aggregated species‐level variables driven by repeated species co‐occurrences: a pervasive problem in community and assemblage data , 2017 .

[27]  Akira Mori,et al.  Biodiversity and ecosystem services in forest ecosystems: a research agenda for applied forest ecology , 2017 .

[28]  Sebastian T. Meyer,et al.  Handbook of field protocols for using REFA methods to approximate ecosystem functions - Version 1.0 , 2017 .

[29]  F. Silveira,et al.  Assessing bias and knowledge gaps on seed ecology research: implications for conservation agenda and policy. , 2016, Ecological applications : a publication of the Ecological Society of America.

[30]  Adalberto J. Santos,et al.  The strong influence of collection bias on biodiversity knowledge shortfalls of Brazilian terrestrial biodiversity , 2016 .

[31]  R. Mcmanamay,et al.  Filling in the GAPS: evaluating completeness and coverage of open‐access biodiversity databases in the United States , 2016, Ecology and evolution.

[32]  S. Williams,et al.  Rare species contribute disproportionately to the functional structure of species assemblages , 2016, Proceedings of the Royal Society B: Biological Sciences.

[33]  J. Lobo,et al.  Seven Shortfalls that Beset Large-Scale Knowledge of Biodiversity , 2015 .

[34]  Anuj Karpatne,et al.  BHPMF – a hierarchical Bayesian approach to gap-filling and trait prediction for macroecology and functional biogeography , 2015 .

[35]  F. Scarano,et al.  Brazilian Atlantic forest: impact, vulnerability, and adaptation to climate change , 2015, Biodiversity and Conservation.

[36]  Brody Sandel,et al.  Estimating themissing species bias in plant trait measurements , 2015 .

[37]  Ricardo A Correia,et al.  Geographic trends and information deficits in Amazonian conservation research , 2015, Biodiversity and Conservation.

[38]  S. Dray,et al.  Principal component analysis with missing values: a comparative survey of methods , 2015, Plant Ecology.

[39]  L. Mommer,et al.  Going underground: root traits as drivers of ecosystem processes. , 2014, Trends in ecology & evolution.

[40]  B. Young,et al.  Imputation of missing data in life‐history trait datasets: which approach performs the best? , 2014 .

[41]  D. Laughlin,et al.  Applying trait-based models to achieve functional targets for theory-driven ecological restoration 1 Appendix S 1 . User ’ s guide and R code for applying trait-based models in ecological restoration Getting started , 2014 .

[42]  B. Soares-Filho,et al.  Cracking Brazil's Forest Code , 2014, Science.

[43]  P. Reich The world‐wide ‘fast–slow’ plant economics spectrum: a traits manifesto , 2014 .

[44]  Nathan G. Swenson,et al.  Phylogenetic imputation of plant functional trait databases , 2014 .

[45]  R. Corlett,et al.  Will plant movements keep up with climate change? , 2013, Trends in ecology & evolution.

[46]  Wilfried Thuiller,et al.  Rare Species Support Vulnerable Functions in High-Diversity Ecosystems , 2013, PLoS biology.

[47]  M. Kessler,et al.  Non-geographic collecting biases in herbarium specimens of Australian daisies (Asteraceae) , 2013, Biodiversity and Conservation.

[48]  A. P. Schaffers,et al.  Too good to be true: pitfalls of using mean Ellenberg indicator values in vegetation analyses , 2012 .

[49]  Fiona J. Thomson,et al.  Seed dispersal distance is more strongly correlated with plant height than with seed mass , 2011 .

[50]  Pedro Cardoso,et al.  The seven impediments in invertebrate conservation and how to overcome them , 2011 .

[51]  E. Ezcurra,et al.  Sampling procedures and species estimation: testing the effectiveness of herbarium data against vegetation sampling in an oceanic island , 2011 .

[52]  C. Ricotta,et al.  Accounting for uncertainty when mapping species distributions: The need for maps of ignorance , 2011 .

[53]  Sandra Lavorel,et al.  Using plant functional traits to understand the landscape distribution of multiple ecosystem services , 2011 .

[54]  D. Brito Overcoming the Linnean shortfall: Data deficiency and biological survey priorities , 2010 .

[55]  Jaboury Ghazoul,et al.  Forest conversion and provision of ecosystem services in the Brazilian Atlantic Forest , 2010 .

[56]  Carolyn Hull Sieg,et al.  A multi‐trait test of the leaf‐height‐seed plant strategy scheme with 133 species from a pine forest flora , 2010 .

[57]  L. Poorter,et al.  The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. , 2010, The New phytologist.

[58]  J. Chave,et al.  Towards a Worldwide Wood Economics Spectrum 2 . L E a D I N G D I M E N S I O N S I N W O O D F U N C T I O N , 2022 .

[59]  Richard York,et al.  Global biodiversity decline of marine and freshwater fish: A cross-national analysis of economic, demographic, and ecological influences , 2008 .

[60]  Fernando Valladares,et al.  Ecological limits to plant phenotypic plasticity. , 2007, The New phytologist.

[61]  J. Diniz‐Filho,et al.  Red herrings revisited: spatial autocorrelation and parameter estimation in geographical ecology , 2007 .

[62]  Alberto Jiménez-Valverde,et al.  Limitations of Biodiversity Databases: Case Study on Seed‐Plant Diversity in Tenerife, Canary Islands , 2007, Conservation biology : the journal of the Society for Conservation Biology.

[63]  C. Violle,et al.  Let the concept of trait be functional , 2007 .

[64]  Mark Westoby,et al.  Land-plant ecology on the basis of functional traits. , 2006, Trends in ecology & evolution.

[65]  Mark Westoby,et al.  A leaf-height-seed (LHS) plant ecology strategy scheme , 1998, Plant and Soil.

[66]  P. Reich,et al.  A handbook of protocols for standardised and easy measurement of plant functional traits worldwide , 2003 .

[67]  M. Westoby,et al.  ECOLOGICAL STRATEGIES : Some Leading Dimensions of Variation Between Species , 2002 .

[68]  David R. Anderson,et al.  Model Selection and Inference: A Practical Information-Theoretic Approach , 2001 .

[69]  Roderick Hunt,et al.  Allocating C-S-R plant functional types : a soft approach to a hard problem , 1999 .

[70]  Peter J. Edwards,et al.  The value of biodiversity : Where ecology and economy blend , 1998 .