Quality Measures for Curvilinear Finite Elements

We present a method for computing robust shape quality measures defined for finite elements of any order and any type, including curved pyramids. The measures are heuristically defined as the minimum of the pointwise quality of curved elements. Three pointwise qualities are considered: the ICN that is related to the conditioning of the stiffness matrix for straight-sided simplicial elements, the scaled Jacobian that is defined for quadrangles and hexahedra, and a new shape quality that is defined for triangles and tetrahedra. Based on previous work presented by Johnen et al. (Journal of Computational Physics 233:359–372, 2013, [1]); Johnen and Geuzaine (Journal of Computational Physics 299:124–129, 2015, [2]), the computation of the minimum of the pointwise qualities is efficient. The key feature is to expand polynomial quantities into Bezier bases which allows to compute sharp bounds on the minimum of the pointwise quality measures.

[1]  S. Sherwin,et al.  Mesh generation in curvilinear domains using high‐order elements , 2002 .

[2]  Per-Olof Persson,et al.  High-order unstructured curved mesh generation using the Winslow equations , 2016, J. Comput. Phys..

[3]  Robert M. O'Bara,et al.  Automatic p-version mesh generation for curved domains , 2004, Engineering with Computers.

[4]  Marc Duruflé,et al.  Higher-order Finite Elements for Hybrid Meshes Using New Nodal Pyramidal Elements , 2010, J. Sci. Comput..

[5]  D. A. Field Qualitative measures for initial meshes , 2000 .

[6]  François Guibault,et al.  Proposal of Benchmarks for 3D Unstructured Tetrahedral Mesh Optimization , 2007 .

[7]  Franck Ledoux,et al.  Automatic domain partitioning for quadrilateral meshing with line constraints , 2015, Engineering with Computers.

[8]  Patrick M. Knupp,et al.  Algebraic Mesh Quality Metrics , 2001, SIAM J. Sci. Comput..

[9]  P. Knupp Achieving finite element mesh quality via optimization of the jacobian matrix norm and associated qu , 2000 .

[10]  K. Morgan,et al.  The generation of arbitrary order curved meshes for 3D finite element analysis , 2013 .

[11]  Xevi Roca,et al.  An augmented Lagrangian formulation to impose boundary conditions for distortion based mesh moving and curving , 2017 .

[12]  Jonathan Richard Shewchuk,et al.  What is a Good Linear Element? Interpolation, Conditioning, and Quality Measures , 2002, IMR.

[13]  B. Joe,et al.  Relationship between tetrahedron shape measures , 1994 .

[14]  T. Blacker,et al.  Unconstrained plastering—Hexahedral mesh generation via advancing‐front geometry decomposition , 2010 .

[15]  William L. Shoemake Linear elastic mesh deformation via localized orthotropic material properties optimized by the adjoint method , 2017 .

[16]  Joachim Schöberl,et al.  NETGEN An advancing front 2D/3D-mesh generator based on abstract rules , 1997 .

[17]  Christophe Geuzaine,et al.  Robust untangling of curvilinear meshes , 2013, J. Comput. Phys..

[18]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[19]  A. Liu,et al.  On the shape of tetrahedra from bisection , 1994 .

[20]  Paul-Louis George,et al.  Construction of tetrahedral meshes of degree two , 2012 .

[21]  Xevi Roca,et al.  Defining Quality Measures for High-Order Planar Triangles and Curved Mesh Generation , 2011, IMR.

[22]  Xevi Roca,et al.  Optimization of a regularized distortion measure to generate curved high‐order unstructured tetrahedral meshes , 2015 .

[23]  Yasushi Ito,et al.  Octree‐based reasonable‐quality hexahedral mesh generation using a new set of refinement templates , 2009 .

[24]  Robert Michael Kirby,et al.  On Interpolation Errors over Quadratic Nodal Triangular Finite Elements , 2013, IMR.

[25]  Xevi Roca,et al.  Defining Quality Measures for Validation and Generation of High-Order Tetrahedral Meshes , 2013, IMR.

[26]  Ivo Babuška,et al.  The p-Version of the Finite Element Method for Parabolic Equations. Part 1 , 1981 .

[27]  Rémi Abgrall,et al.  High‐order CFD methods: current status and perspective , 2013 .

[28]  Rémi Abgrall,et al.  A method for computing curved meshes via the linear elasticity analogy , 2014 .

[29]  Abel Gargallo Peiró Validation and generation of curved meshes for high-order unstructured methods , 2014 .

[30]  Patrick M. Knupp Label-Invariant Mesh Quality Metrics , 2009, IMR.

[31]  Steve L. Karman,et al.  Automatic 2D high-order viscous mesh generation by Spring-Field and vector-adding , 2016 .

[32]  Amaury Johnen Indirect quadrangular mesh generation and validation of curved finite elements , 2016 .

[33]  G. Karniadakis,et al.  Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .

[34]  Kenji Shimada,et al.  Fully-automated hex-dominant mesh generation with directionality control via packing rectangular solid cells , 2003 .

[35]  Christophe Geuzaine,et al.  A frontal approach to hex-dominant mesh generation , 2014, Adv. Model. Simul. Eng. Sci..

[36]  Kenji Shimada,et al.  Geometric reasoning in sketch-based volumetric decomposition framework for hexahedral meshing , 2013, Engineering with Computers.

[37]  Yongjie Zhang,et al.  Adaptive and Quality Quadrilateral/Hexahedral Meshing from Volumetric Data. , 2006, Computer methods in applied mechanics and engineering.

[38]  P. M. Knupp On the ivertability of the isoparametric map , 1990 .

[39]  Per-Olof Persson,et al.  Curved mesh generation and mesh refinement using Lagrangian solid mechanics , 2008 .

[40]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[41]  Robert Michael Kirby,et al.  To CG or to HDG: A Comparative Study , 2012, J. Sci. Comput..

[42]  Xevi Roca,et al.  Distortion and quality measures for validating and generating high-order tetrahedral meshes , 2014, Engineering with Computers.

[43]  Robert Michael Kirby,et al.  From h to p efficiently: Implementing finite and spectral/hp element methods to achieve optimal performance for low- and high-order discretisations , 2010, J. Comput. Phys..

[44]  Rémi Abgrall,et al.  A method for computing curved meshes via the linear elasticity analogy, application to fluid dynamics problems , 2014 .

[45]  Christophe Geuzaine,et al.  Geometrical validity of curvilinear finite elements , 2011, J. Comput. Phys..

[46]  P. Knupp Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part II—A framework for volume mesh optimization and the condition number of the Jacobian matrix , 2000 .

[47]  P. Knupp Algebraic mesh quality metrics for unstructured initial meshes , 2003 .

[48]  S. Sherwin,et al.  An isoparametric approach to high-order curvilinear boundary-layer meshing , 2015 .

[49]  I. Babuska,et al.  The $h{\text{ - }}p$ Version of the Finite Element Method for Domains with Curved Boundaries , 1988 .

[50]  U. Shumlak,et al.  A priori mesh quality metric error analysis applied to a high-order finite element method , 2011, J. Comput. Phys..

[51]  Christophe Geuzaine,et al.  Geometrical validity of curvilinear pyramidal finite elements , 2015, J. Comput. Phys..