Signals of Opportunity Aided Inertial Navigation

A signal of opportunity (SOP)-aided inertial navigation system (INS) framework provides various technical solutions to technical problems facing GNSS implementations. A mobile receiver, whether handheld or vehicle-mounted, has access to Global Navigation Satellite System (GNSS) signals, multiple unknown terrestrial SOPs, and IMU measurements, which are used to estimate receiver states. When GNSS signals become unreliable, the mobile receiver continues to navigate using the SOP-aided INS. The SOP-aided INS produces bounded estimation errors in the absence of GNSS signals, and the bounds are dependent on the quantity and quality of exploited SOPs.

[1]  Zaher M. Kassas,et al.  Indoor Localization Based on Floor Plans and Power Maps: Non-Line of Sight to Virtual Line of Sight , 2015 .

[2]  Zaher M. Kassas,et al.  Performance Characterization of Positioning in LTE Systems , 2016 .

[3]  Todd E. Humphreys,et al.  Adaptive estimation of signals of opportunity , 2014 .

[4]  Anastasios I. Mourikis,et al.  Consistency of EKF-Based Visual-Inertial Odometry , 2012 .

[5]  Steve Scheding,et al.  Comparison of Opportunistic Signals for Localisation , 2010 .

[6]  Todd E. Humphreys,et al.  Observability Analysis of Collaborative Opportunistic Navigation With Pseudorange Measurements , 2014, IEEE Transactions on Intelligent Transportation Systems.

[7]  Todd E. Humphreys,et al.  Observability and Estimability of Collaborative Opportunistic Navigation with Pseudorange Measurements , 2012 .

[8]  Ming Yang,et al.  Monocular Visual-Inertial Odometry Based on Sparse Feature Selection with Adaptive Grid , 2018, 2018 IEEE Intelligent Vehicles Symposium (IV).

[9]  Kenneth M. Pesyna,et al.  Tightly-Coupled Opportunistic Navigation for Deep Urban and Indoor Positioning , 2011 .

[10]  John Raquet,et al.  Non-GNSS radio frequency navigation , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[11]  Todd E. Humphreys,et al.  Motion planning for optimal information gathering in opportunistic navigation systems , 2013 .

[12]  Todd E. Humphreys,et al.  Receding horizon trajectory optimization in opportunistic navigation environments , 2015, IEEE Transactions on Aerospace and Electronic Systems.

[13]  G. Swenson,et al.  Interferometry and Synthesis in Radio Astronomy , 2017, 1708.09761.

[14]  S. M. Smith,et al.  Enhancement of the inertial navigation system for the Morpheus autonomous underwater vehicles , 2001 .

[15]  Erik Blasch,et al.  Mobile positioning via fusion of mixed signals of opportunity , 2014, IEEE Aerospace and Electronic Systems Magazine.

[16]  Paul D. Groves,et al.  Principles of GNSS, Inertial, and Multi-sensor Integrated Navigation Systems , 2012 .

[17]  Thia Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software , 2001 .

[18]  Richard A. Snay,et al.  Continuously Operating Reference Station (CORS): History, Applications, and Future Enhancements , 2008 .

[19]  Agus Budiyono,et al.  Principles of GNSS, Inertial, and Multi-sensor Integrated Navigation Systems , 2012 .

[20]  Todd E. Humphreys,et al.  Greedy Motion Planning for Simultaneous Signal Landscape Mapping and Receiver Localization , 2015, IEEE Journal of Selected Topics in Signal Processing.

[21]  Igor Bisio,et al.  A Trainingless WiFi Fingerprint Positioning Approach Over Mobile Devices , 2014, IEEE Antennas and Wireless Propagation Letters.

[22]  Hugh F. Durrant-Whyte,et al.  Simultaneous localization and mapping: part I , 2006, IEEE Robotics & Automation Magazine.

[23]  Andrew G. Dempster,et al.  Indoor Location Fingerprinting Using FM Radio Signals , 2014, IEEE Transactions on Broadcasting.

[24]  Andrey Soloviev,et al.  Tight Coupling of GPS and INS for Urban Navigation , 2010, IEEE Transactions on Aerospace and Electronic Systems.

[25]  J. Farrell,et al.  The global positioning system and inertial navigation , 1999 .

[26]  Matthew Rabinowitz,et al.  A new positioning system using television synchronization signals , 2005, IEEE Transactions on Broadcasting.

[27]  Olivier Julien,et al.  Positioning Using Mobile TV Based on the DVB-SH Standard , 2011 .

[28]  Mathieu Joerger,et al.  Analysis of Iridium-Augmented GPS for Floating Carrier Phase Positioning , 2010 .

[29]  Zaher M. Kassas,et al.  GNSS Vertical Dilution of Precision Reduction using Terrestrial Signals of Opportunity , 2016 .

[30]  Todd E. Humphreys,et al.  Receding Horizon Trajectory Optimization for Simultaneous Signal Landscape Mapping and Receiver Localization , 2013 .

[31]  Michael B. Mathews,et al.  Multi-Sensor, Signals of Opportunity Augmented GPS/GNSS Challenged Navigation , 2013 .

[32]  David Lubinski,et al.  An Opportunity for "Accuracy". , 1995 .

[33]  J. McEllroy Navigation Using Signals of Opportunity in the AM Transmission Band , 2006 .

[34]  Kenneth M. Pesyna,et al.  Constructing a continuous phase time history from TDMA signals for opportunistic navigation , 2012, Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium.

[35]  N. Trawny,et al.  Indirect Kalman Filter for 3 D Attitude Estimation , 2005 .

[36]  Stephanie Thalberg,et al.  Interferometry And Synthesis In Radio Astronomy , 2016 .

[37]  Todd E. Humphreys,et al.  Observability Analysis of Opportunistic Navigation with Pseudorange Measurements , 2012 .

[38]  Todd E. Humphreys,et al.  The price of anarchy in active signal landscape map building , 2013, 2013 IEEE Global Conference on Signal and Information Processing.

[39]  Todd E. Humphreys,et al.  Collaborative Opportunistic Navigation , 2012 .

[40]  Kenneth A. Fisher,et al.  The Navigation Potential of Signals of Opportunity-Based Time Difference of Arrival Measurements , 2005 .

[41]  Zaher M. Kassas,et al.  A software-defined receiver architecture for cellular CDMA-based navigation , 2016, 2016 IEEE/ION Position, Location and Navigation Symposium (PLANS).