Sliding observer for synchronization of fractional order chaotic systems with mismatched parameter

In this paper, we propose an observer-based fractional order chaotic synchronization scheme. Our method concerns fractional order chaotic systems in Brunovsky canonical form. Using sliding mode theory, we achieve synchronization of fractional order response with fractional order drive system using a classical Lyapunov function, and also by fractional order differentiation and integration, i.e. differintegration formulas, state synchronization proved to be established in a finite time. To demonstrate the efficiency of the proposed scheme, fractional order version of a well-known chaotic system; Arnodo-Coullet system is considered as illustrative examples.

[1]  Changpin Li,et al.  On chaos synchronization of fractional differential equations , 2007 .

[2]  M. Feki Observer-based exact synchronization of ideal and mismatched chaotic systems , 2003 .

[3]  Reza Ghaderi,et al.  Chaotic fractional-order Coullet system: Synchronization and control approach , 2010 .

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  D. Ji,et al.  Synchronization of two different non-autonomous chaotic systems using fuzzy disturbance observer , 2010 .

[6]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[7]  Ervin Goldfain,et al.  Fractional dynamics and the Standard Model for particle physics , 2008 .

[8]  Bashir Ahmad,et al.  Existence results and monotone iterative technique for impulsive hybrid functional differential systems with anticipation and retardation , 2008, Appl. Math. Comput..

[9]  Dumitru Baleanu,et al.  Hamilton–Jacobi formulation of systems within Caputo's fractional derivative , 2007, hep-th/0703225.

[10]  G. Zaslavsky Chaos, fractional kinetics, and anomalous transport , 2002 .

[11]  N. Laskin Fractional Schrödinger equation. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  A. Floren,et al.  ' " ' " ' " . " ' " " " " " ' " ' " " " " " : ' " 1 , 2001 .

[13]  Dumitru Baleanu,et al.  Lagrangian Formulation of Classical Fields within Riemann-Liouville Fractional Derivatives , 2005 .

[14]  I. Podlubny Fractional differential equations , 1998 .

[15]  Konstantin E. Starkov,et al.  On synchronization of chaotic systems based on the Thau observer design , 2012 .

[16]  Zheng-Ming Ge,et al.  Chaos synchronization and parameter identification of three time scales brushless DC motor system , 2005 .

[17]  V. Lakshmikantham,et al.  Monotone iterative techniques for nonlinear differential equations , 1985 .

[18]  H. A. Reuver,et al.  Probabilistic analysis of dendritic branching patterns of cortical neurons , 2004, Kybernetik.

[19]  J. Rogers Chaos , 1876 .

[20]  R. Aguilar-López,et al.  An exponential polynomial observer for synchronization of chaotic systems , 2010 .

[21]  W. Deng,et al.  Chaos synchronization of the fractional Lü system , 2005 .

[22]  J. Carifio,et al.  Nonlinear Analysis , 1995 .

[23]  S. Holm,et al.  Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency. , 2004, The Journal of the Acoustical Society of America.

[24]  Renormalization group and the emergence of random fractal topology in quantum field theory , 2004 .

[25]  E. Bai,et al.  On the synchronization of a class of electronic circuits that exhibit chaos , 2002 .

[26]  Changpin Li,et al.  The synchronization of three fractional differential systems , 2007 .

[27]  Sachin Bhalekar,et al.  Chaos in fractional ordered Liu system , 2010, Comput. Math. Appl..

[28]  Department of Physics,et al.  Some Applications of Fractional Equations , 2003 .

[29]  M. E. Naschie,et al.  A review of E infinity theory and the mass spectrum of high energy particle physics , 2004 .

[30]  Ervin Goldfain Local scale invariance, Cantorian space–time and unified field theory , 2005 .

[31]  Wojbor A. Woyczyński,et al.  Models of anomalous diffusion: the subdiffusive case , 2005 .

[32]  Mehmet Önder Efe,et al.  Fractional Fuzzy Adaptive Sliding-Mode Control of a 2-DOF Direct-Drive Robot Arm , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[34]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[35]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[36]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[37]  Leonid Fridman,et al.  Synchronization in reduced-order of chaotic systems via control approaches based on high-order sliding-mode observer , 2009 .