A simple method for the precise determination of multi-elements in pyrite and magnetite by ICP-MS and ICP-OES with matrix removal

[1]  Qingfei Wang,et al.  LA-ICP-MS trace element analysis of magnetite and pyrite from the Hetaoping Fe-Zn-Pb skarn deposit in Baoshan block, SW China: Implications for ore-forming processes , 2020 .

[2]  G. Beaudoin,et al.  Textures and Chemical Compositions of Magnetite from Iron Oxide Copper-Gold (IOCG) and Kiruna-Type Iron Oxide-Apatite (IOA) Deposits and Their Implications for Ore Genesis and Magnetite Classification Schemes , 2019, Economic Geology.

[3]  G. Beaudoin,et al.  Trace Element Composition of Igneous and Hydrothermal Magnetite from Porphyry Deposits: Relationship to Deposit Subtypes and Magmatic Affinity , 2019, Economic Geology.

[4]  Zhenyu Chen,et al.  Rb-Sr geochronology of single gold-bearing pyrite grains from the Katbasu gold deposit in the South Tianshan, China and its geological significance , 2016, Ore Geology Reviews.

[5]  T. Lacourse,et al.  Magnetite as an Indicator Mineral in the Exploration of Porphyry Deposits: A Case Study in Till near the Mount Polley Cu-Au Deposit, British Columbia, Canada , 2017 .

[6]  Lianchang Zhang,et al.  Determination of multi-element concentrations at ultra-low levels in alternating magnetite and pyrite by HR-ICP-MS using matrix removal and preconcentration , 2016 .

[7]  Z. Zeng,et al.  Factors affecting the rare earth element compositions in massive sulfides from deep‐sea hydrothermal systems , 2015 .

[8]  J. Enzweiler,et al.  New ICP‐MS Results for Trace Elements in Five Iron‐Formation Reference Materials , 2015 .

[9]  M. Regelous,et al.  Rapid determination of 26 elements in iron meteorites using matrix removal and membrane desolvating quadrupole ICP-MS , 2014 .

[10]  D. French,et al.  The chemistry of hydrothermal magnetite: A review , 2014 .

[11]  Jing Zhang,et al.  LA-ICP-MS trace element analysis of pyrite from the Chang'an gold deposit, Sanjiang region, China: Implication for ore-forming process ☆ ☆☆ , 2014 .

[12]  Lianchang Zhang,et al.  Analysis of ultra-low level rare earth elements in magnetite samples from banded iron formations using HR-ICP-MS after chemical separation , 2014 .

[13]  J. Long,et al.  Trace element content of sedimentary pyrite as a new proxy for deep-time ocean-atmosphere evolution , 2014 .

[14]  N. Cook,et al.  Arsenopyrite-pyrite association in an orogenic gold ore: tracing mineralization history from textures and trace elements , 2013 .

[15]  Yali Sun,et al.  Determination of Rare Earth Elements and Thorium at Nanogram Levels in Ultramafic Samples by Inductively Coupled Plasma‐Mass Spectrometry Combined with Chemical Separation and Pre‐concentration , 2013 .

[16]  M. Parada,et al.  Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: A SIMS/EMPA trace element study , 2013 .

[17]  R. Large,et al.  LA-ICPMS and EPMA studies of pyrite, arsenopyrite and loellingite from the Bhukia-Jagpura gold prospect, southern Rajasthan, India: Implications for ore genesis and gold remobilization , 2012 .

[18]  Lianchang Zhang,et al.  Zircon U–Pb age, Hf isotopes and geochemistry of Shuichang Algoma-type banded iron-formation, North China Craton: Constraints on the ore-forming age and tectonic setting , 2011 .

[19]  R. Berry,et al.  Pyrite and Pyrrhotite Textures and Composition in Sediments, Laminated Quartz Veins, and Reefs at Bendigo Gold Mine, Australia: Insights for Ore Genesis , 2011 .

[20]  H. Frimmel,et al.  Trace-element characteristics of different pyrite types in Mesoarchaean to Palaeoproterozoic placer deposits , 2010 .

[21]  G. Dipple,et al.  UNCLOAKING INVISIBLE GOLD: USE OF NANOSIMS TO EVALUATE GOLD, TRACE ELEMENTS, AND SULFUR ISOTOPES IN PYRITE FROM CARLIN-TYPE GOLD DEPOSITS , 2009 .

[22]  R. Large,et al.  Gold and Trace Element Zonation in Pyrite Using a Laser Imaging Technique: Implications for the Timing of Gold in Orogenic and Carlin-Style Sediment-Hosted Deposits , 2009 .

[23]  P. Andersson,et al.  Neodymium isotopes in Archean seawater and implications for the marine Nd cycle in Earth's early oceans , 2009 .

[24]  M. Sun,et al.  Determination of ultra-trace rare earth elements in ultramafic and sulfide samples by quadrupole inductively coupled plasma-mass spectrometry , 2009 .

[25]  A. Hardisson,et al.  Determination of Al, Ba, Ca, Cu, Fe, K, Mg, Mn, Na, Sr and Zn in red wine samples by inductively coupled plasma optical emission spectroscopy: Evaluation of preliminary sample treatments , 2008 .

[26]  Jianfeng Zhou,et al.  Determination of trace amounts of lead, arsenic, nickel and cobalt in high-purity iron oxide pigment by inductively coupled plasma atomic emission spectrometry after iron matrix removal with extractant-contained resin. , 2007, Analytica chimica acta.

[27]  S. Furuzawa,et al.  Removal of an iron matrix with polyoxyethylene-type surfactant-coated amberlite XAD-4 for the determination of trace impurities in high-purity iron. , 2005, Analytical chemistry.

[28]  Martin J T Milton,et al.  Analytical techniques for trace element analysis: an overview , 2005 .

[29]  J. Malpas,et al.  Determination of Rare Earth Elements and Y in Ultramafic Rocks by ICP‐MS After Preconcentration Using Fe(OH)3 and Mg(OH)2 Coprecipitation , 2005 .

[30]  R. Pattrick,et al.  Variations in the compositional, textural and electrical properties of natural pyrite: a review , 2004 .

[31]  M. El-shahat,et al.  Preconcentration and separation of iron, zinc, cadmium and mercury, from waste water using Nile blue a grafted polyurethane foam. , 2003, Talanta.

[32]  C. Pin,et al.  Combined cation-exchange and extraction chromatography for the concomitant separation of Zr, Hf, Th, and the Lanthanides from geological materials. , 2002, Talanta.

[33]  P. McGoldrick,et al.  An Evaluation of Methods for the Chemical Decomposition of Geological Materials for Trace Element Determination using ICP-MS , 2001 .

[34]  哲也 芦野,et al.  化学分離/分光分析法による超高純度鉄, 鋼, 鉄-クロム合金などに含まれる超微量不純物元素の定量 , 2001 .

[35]  Volker J. Dietrich,et al.  Determination of Heavy Metals in Soils, Sediments and Geological Materials by ICP-AES and ICP-MS , 2001 .

[36]  P. Dulski Reference Materials for Geochemical Studies: New Analytical Data by ICP‐MS and Critical Discussion of Reference Values , 2001 .

[37]  J. Craig,et al.  Pyrite: physical and chemical textures , 1998 .

[38]  A. Turanov,et al.  Extraction chromatographic separation of Y, REE, Bi, Th, and U from the matrix suitable for their determination in pure iron and Low-Alloyed steels by ICP-MS and ICP-AES , 1998 .

[39]  F. J. Alguacil,et al.  Isotope Dilution Analysis for Flow Injection ICPMS Determination of Microgram per Gram Levels of Boron in Iron and Steel after Matrix Removal , 1996 .

[40]  K. Govindaraju,et al.  1994 REPORT ON ZINNWALDITE ZW‐C ANALYSED BY NINETY‐TWO GIT‐IWG MEMBER‐LABORATORIES , 1994 .

[41]  S. Abbey IRON‐FORMATION SAMPLES AND THE FIVE‐MODE METHOD , 1993 .

[42]  T. Braun,et al.  Sorption of iron(III) and iron(II) from acidic chloride solutions by polyether and polyester type polyurethane foams , 1990 .

[43]  S. Abbey,et al.  FeR-1, FeR-2, FeR-3, and FeR-4: Four Canadian iron-formation samples prepared for use as reference materials , 1983 .

[44]  F. I. Roberts Trace element chemistry of pyrite: A useful guide to the occurrence of sulfide base metal mineralization , 1982 .

[45]  J. Mermet,et al.  Iron spectrum in the 200-300 nm range emitted by an inductively coupled argon plasma , 1982 .

[46]  G. Sabatini,et al.  A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems , 1979 .

[47]  H. Gesser,et al.  The solvent extraction of Fe(III) from acidic chloride solutions by open cell polyurethane foam sponge (OCPUFS) , 1979 .

[48]  H. Gesser,et al.  Open-Cell Polyurethane Foam Sponge as a “Solvent Extractor” for Gallium and Iron , 1976 .

[49]  H. Bowen Absorption by polyurethane foams; new method of separation , 1970 .

[50]  N. Nachtrieb,et al.  The extraction of ferric chloride by isopropyl ether. , 1948, Journal of the American Chemical Society.