Thermal shock resistance of ZrB2 and ZrB2–30% SiC

Abstract Thermal shock of high density (>99% relative density) zirconium diboride (ZrB2) and zirconium diboride containing 30 vol.% silicon carbide (SiC) was studied. Calculations based on thermal shock theory indicated that ZrB2–30 vol.% SiC should have greater thermal shock resistance than ZrB2 due to its higher fracture strength. Water quench tests revealed essentially the same critical thermal shock values for both materials (ΔTcrit = ∼400 °C). A finite element model was used to estimate the temperatures and stresses in both ceramics during quench testing. The model predicted that maximum thermal stresses during the experimental quench test exceeded the strength of ZrB2 (568 MPa) but not ZrB2–30 vol.% SiC (863 MPa). The lower than predicted thermal shock resistance of ZrB2–SiC was attributed to the non-uniform cooling between the ZrB2 matrix grains and the SiC particulate phase.

[1]  Erica L. Corral,et al.  Ultra High Temperature Ceramics for Hypersonic Vehicle Applications , 2006 .

[2]  R. N. Singh,et al.  Thermal shock behaviour of ceramics and ceramic composites , 1994 .

[3]  William G. Fahrenholtz,et al.  Thermodynamic Analysis of ZrB2–SiC Oxidation: Formation of a SiC‐Depleted Region , 2007 .

[4]  H. Inui,et al.  Temperature dependence of thermal expansion and elastic constants of single crystals of ZrB2 and the suitability of ZrB2 as a substrate for GaN film , 2003 .

[5]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[6]  G. Hilmas,et al.  Effect of hot pressing time and temperature on the microstructure and mechanical properties of ZrB2–SiC , 2007 .

[7]  R. Bradt,et al.  Thermal expansion of the hexagonal (6H) polytype of silicon carbide , 1986 .

[8]  Jonathan A. Salem,et al.  Evaluation of ultra-high temperature ceramics foraeropropulsion use , 2002 .

[9]  D. Hasselman Effect of Thermal Conductivity Mismatch on the Thermal Stresses in a Dispersed Phase-Continuous Matrix Composite Material Undergoing Steady-State Heat Flow , 2002 .

[10]  G. Hilmas,et al.  Thermophysical Properties of ZrB2-Based Ceramics , 2008 .

[11]  Sandra P. Walker,et al.  Sharp Refractory Composite Leading Edges on Hypersonic Vehicles , 2003 .

[12]  C. Nan,et al.  Effective thermal conductivity of particulate composites with interfacial thermal resistance , 1997 .

[13]  E. Case,et al.  The measurement of the surface heat transfer coefficient for ceramics quenched into a water bath , 1991 .

[14]  Donald T. Ellerby,et al.  High‐Strength Zirconium Diboride‐Based Ceramics , 2004 .

[15]  P. Supancic,et al.  Thermal Shock Failure of Brittle Materials , 2002 .

[16]  R. Telle,et al.  Boride‐Based Hard Materials , 2008 .

[17]  W. Kingery,et al.  Factors Affecting Thermal Stress Resistance of Ceramic Materials , 1955 .

[18]  J. R. Thomas,et al.  Analysis of Effect of Heat‐Transfer Variables on Thermal Stress Resistance of Brittle Ceramics Measured by Quenching Experiments , 1980 .

[19]  M. Swain,et al.  Thermal Shock Behavior of Duplex Ceramics , 1991 .

[20]  G. Hilmas,et al.  Influence of silicon carbide particle size on the microstructure and mechanical properties of zirconium diboride–silicon carbide ceramics , 2007 .

[21]  D. Hasselman,et al.  Effect of bath and specimen temperature on the thermal stress resistance of brittle ceramics subjected to thermal quenching , 1981 .

[22]  Michel W. Barsoum,et al.  Fundamentals of Ceramics , 1996 .