Geometric MCMC for infinite-dimensional inverse problems
暂无分享,去创建一个
Andrew M. Stuart | Alexandros Beskos | Mark A. Girolami | Shiwei Lan | Patrick E. Farrell | A. Stuart | M. Girolami | A. Beskos | Shiwei Lan | P. Farrell
[1] T. Kurtz,et al. Stochastic equations in infinite dimensions , 2006 .
[2] Patrick R. Conrad,et al. Accelerating Asymptotically Exact MCMC for Computationally Intensive Models via Local Approximations , 2014, 1402.1694.
[3] Andrew M. Stuart,et al. Uncertainty Quantification and Weak Approximation of an Elliptic Inverse Problem , 2011, SIAM J. Numer. Anal..
[4] Aaron Smith,et al. Asymptotically Exact MCMC Algorithms via Local Approximations of Computationally Intensive Models , 2014 .
[5] A. Stuart,et al. Spectral gaps for a Metropolis–Hastings algorithm in infinite dimensions , 2011, 1112.1392.
[6] Tiangang Cui,et al. Dimension-independent likelihood-informed MCMC , 2014, J. Comput. Phys..
[7] L. Verlet. Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .
[8] David A. Ham,et al. Automated Derivation of the Adjoint of High-Level Transient Finite Element Programs , 2012, SIAM J. Sci. Comput..
[9] S. Duane,et al. Hybrid Monte Carlo , 1987 .
[10] Mark A. Girolami,et al. Emulation of higher-order tensors in manifold Monte Carlo methods for Bayesian Inverse Problems , 2015, J. Comput. Phys..
[11] Paul G. Constantine,et al. Accelerating Markov Chain Monte Carlo with Active Subspaces , 2016, SIAM J. Sci. Comput..
[12] Gideon Simpson,et al. Algorithms for Kullback-Leibler Approximation of Probability Measures in Infinite Dimensions , 2014, SIAM J. Sci. Comput..
[13] James Martin,et al. A Computational Framework for Infinite-Dimensional Bayesian Inverse Problems, Part II: Stochastic Newton MCMC with Application to Ice Sheet Flow Inverse Problems , 2013, SIAM J. Sci. Comput..
[14] Paul G. Constantine,et al. Accelerating MCMC with active subspaces , 2015, 1510.00024.
[15] Daniel Rudolf,et al. On a Generalization of the Preconditioned Crank–Nicolson Metropolis Algorithm , 2015, Found. Comput. Math..
[16] L. Tierney. A note on Metropolis-Hastings kernels for general state spaces , 1998 .
[17] M. Girolami,et al. Solving large-scale PDE-constrained Bayesian inverse problems with Riemann manifold Hamiltonian Monte Carlo , 2014, 1407.1517.
[18] G. Roberts,et al. MCMC methods for diffusion bridges , 2008 .
[19] Radford M. Neal. MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.
[20] Kody J. H. Law. Proposals which speed up function-space MCMC , 2014, J. Comput. Appl. Math..
[21] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[22] Anders Logg,et al. The FEniCS Project Version 1.5 , 2015 .
[23] A. Gelman,et al. Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .
[24] G. Roberts,et al. MCMC Methods for Functions: ModifyingOld Algorithms to Make Them Faster , 2012, 1202.0709.
[25] M. Girolami,et al. Markov Chain Monte Carlo from Lagrangian Dynamics , 2015, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.
[26] M. Girolami,et al. Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).
[27] A. Marsden,et al. A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations , 2011 .
[28] M. Girolami,et al. Lagrangian Dynamical Monte Carlo , 2012, 1211.3759.
[29] M. Girolami,et al. Langevin diffusions and the Metropolis-adjusted Langevin algorithm , 2013, 1309.2983.
[30] David Higdon,et al. Adaptive Hessian-Based Nonstationary Gaussian Process Response Surface Method for Probability Density Approximation with Application to Bayesian Solution of Large-Scale Inverse Problems , 2012, SIAM J. Sci. Comput..
[31] Alexandros Beskos,et al. Advanced MCMC methods for sampling on diffusion pathspace , 2012, 1203.6216.
[32] J. M. Sanz-Serna,et al. Hybrid Monte Carlo on Hilbert spaces , 2011 .
[33] A. Stuart,et al. The Bayesian Approach to Inverse Problems , 2013, 1302.6989.
[34] Anders Logg,et al. Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .
[35] James Martin,et al. A Stochastic Newton MCMC Method for Large-Scale Statistical Inverse Problems with Application to Seismic Inversion , 2012, SIAM J. Sci. Comput..
[36] K. Chung. Lectures from Markov processes to Brownian motion , 1982 .
[37] T. Bui-Thanh,et al. FEM-based discretization-invariant MCMC methods for PDE-constrained Bayesian inverse problems , 2016 .
[38] T. O’Neil. Geometric Measure Theory , 2002 .
[39] R. Adler. The Geometry of Random Fields , 2009 .
[40] Johannes Janicka,et al. Investigation of the influence of the Reynolds number on a plane jet using direct numerical simulation , 2003 .
[41] Paul G. Constantine,et al. Active Subspaces - Emerging Ideas for Dimension Reduction in Parameter Studies , 2015, SIAM spotlights.
[42] V. Bogachev. Gaussian Measures on a , 2022 .
[43] Tiangang Cui,et al. Likelihood-informed dimension reduction for nonlinear inverse problems , 2014, 1403.4680.
[44] James Martin,et al. A Computational Framework for Infinite-Dimensional Bayesian Inverse Problems Part I: The Linearized Case, with Application to Global Seismic Inversion , 2013, SIAM J. Sci. Comput..