Edge Valued Binary Decision Diagrams

We describe a canonical and compact data structure, called Edge Valued Binary Decision Diagrams (EVBDD), for representing and manipulating pseudo Boolean functions (PBF). EVBDDs are particularly useful when both arithmetic and Boolean operations are required. We describe a general algorithm on EVBDDs for performing any binary operation that is closed over the integers. Next, we discuss the relation between the probability expression of a Boolean function and its representation as a pseudo Boolean function. Utilizing this, we present algorithms for computing the probability spectrum and the Reed-Muller spectrum of a Boolean function directly on the EVBDD. Finally, we describe an extension of EVBDDs which associates both an additive and a multiplicative weight with the true edges of the function graph.

[1]  David E. Muller,et al.  Application of Boolean algebra to switching circuit design and to error detection , 1954, Trans. I R E Prof. Group Electron. Comput..

[2]  Irving S. Reed,et al.  A class of multiple-error-correcting codes and the decoding scheme , 1954, Trans. IRE Prof. Group Inf. Theory.

[3]  H. A. Curtis,et al.  A new approach to The design of switching circuits , 1962 .

[4]  Richard M. Karp,et al.  Minimization Over Boolean Graphs , 1962, IBM J. Res. Dev..

[5]  Peter L. Hammer,et al.  Boolean Methods in Operations Research and Related Areas , 1968 .

[6]  S. Vajda,et al.  BOOLEAN METHODS IN OPERATIONS RESEARCH AND RELATED AREAS , 1969 .

[7]  SUDHAKAR M. REDDY,et al.  Easily Testable Realizations ror Logic Functions , 1972, IEEE Transactions on Computers.

[8]  C.R. Edwards The Application of the Rademacher–Walsh Transform to Boolean Function Classification and Threshold Logic Synthesis , 1975, IEEE Transactions on Computers.

[9]  Edward J. McCluskey,et al.  Probabilistic Treatment of General Combinational Networks , 1975, IEEE Transactions on Computers.

[10]  Gregor von Bochmann Hardware Specification with Temporal Logic: An Example , 1982, IEEE Transactions on Computers.

[11]  Xia Chen,et al.  Mapping of Reed-Muller coefficients and the minimisation of exclusive OR-switching functions , 1982 .

[12]  Michael J. C. Gordon,et al.  Why higher-order logic is a good formalism for specifying and verifying hardware , 1985 .

[13]  George J. Milne,et al.  CIRCAL and the representation of communication, concurrency, and time , 1985, TOPL.

[14]  Stanley L. Hurst,et al.  Spectral techniques in digital logic , 1985 .

[15]  Randal E. Bryant,et al.  Graph-Based Algorithms for Boolean Function Manipulation , 1986, IEEE Transactions on Computers.

[16]  P. Hammer,et al.  Order Relations of Variables in 0-1 Programming , 1987 .

[17]  Randal E. Bryant,et al.  COSMOS: a compiled simulator for MOS circuits , 1987, DAC '87.

[18]  Marek A. Perkowski,et al.  A fast algorithm to minimize multi-output mixed-polarity generalized Reed-Muller forms , 1988, DAC '88.

[19]  Olivier Coudert,et al.  Verification of Synchronous Sequential Machines Based on Symbolic Execution , 1989, Automatic Verification Methods for Finite State Systems.

[20]  Raymond T. Boute,et al.  Representational and Denotational Semantics of Digital Systems , 1989, IEEE Trans. Computers.

[21]  Robert K. Brayton,et al.  Algorithms for discrete function manipulation , 1990, 1990 IEEE International Conference on Computer-Aided Design. Digest of Technical Papers.

[22]  Randal E. Bryant,et al.  Efficient implementation of a BDD package , 1991, DAC '90.

[23]  Bogdan J. Falkowski,et al.  Effective computer methods for the calculation of Rademacher-Walsh spectrum for completely and incompletely specified Boolean functions , 1992, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[24]  Shih-Chieh Chang,et al.  Technology Mapping via Transformations of Function Graphs , 1992, ICCD.

[25]  Randal E. Bryant,et al.  Symbolic Boolean manipulation with ordered binary-decision diagrams , 1992, CSUR.

[26]  Chen-Shang Lin,et al.  On the OBDD-Representation of General Boolean Functions , 1992, IEEE Trans. Computers.

[27]  Jacob A. Abraham,et al.  Probabilistic verification of Boolean functions , 1992, Formal Methods Syst. Des..

[28]  Massoud Pedram,et al.  Boolean matching using binary decision diagrams with applications to logic synthesis and verification , 1992, Proceedings 1992 IEEE International Conference on Computer Design: VLSI in Computers & Processors.

[29]  Yung-Te Lai,et al.  Edge-valued binary decision diagrams for multi-level hierarchical verification , 1992, DAC '92.

[30]  Alberto L. Sangiovanni-Vincentelli,et al.  Communication based logic partitioning , 1992, Proceedings EURO-DAC '92: European Design Automation Conference.

[31]  Marek A. Perkowski,et al.  Fast exact and quasi-minimal minimization of highly testable fixed-polarity AND/XOR canonical networks , 1992, [1992] Proceedings 29th ACM/IEEE Design Automation Conference.

[32]  Sarma B. K. Vrudhula,et al.  BDD Based Decomposition of Logic Functions with Application to FPGA Synthesis , 1993, 30th ACM/IEEE Design Automation Conference.

[33]  Masahiro Fujita,et al.  Spectral Transforms for Large Boolean Functions with Applications to Technology Mapping , 1993, 30th ACM/IEEE Design Automation Conference.

[34]  Sarma B. K. Vrudhula,et al.  FGILP: an integer linear program solver based on function graphs , 1993, ICCAD '93.

[35]  Tsutomu Sasao,et al.  FPGA Design by Generalized Functional Decomposition , 1993 .

[36]  E. Clarke,et al.  Automatic Veriication of Nite-state Concurrent Systems Using Temporal-logic Speciications. Acm , 1993 .

[37]  F. Somenzi,et al.  A New Algorithm for 0-1 Programming Based on Binary Decision Diagrams , 1993 .

[38]  Sarma Vrudhula,et al.  EVBDD-based algorithms for integer linear programming, spectral transformation, and function decomposition , 1994, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[39]  Massoud Pedram,et al.  Power conscious CAD tools and methodologies: a perspective , 1995, Proc. IEEE.

[40]  Sarma B. K. Vrudhula,et al.  Formal Verification Using Edge-Valued Binary Decision Diagrams , 1996, IEEE Trans. Computers.

[41]  Tsutomu Sasao,et al.  Logic Synthesis and Optimization , 1997 .

[42]  Masahiro Fujita,et al.  Multi-Terminal Binary Decision Diagrams: An Efficient Data Structure for Matrix Representation , 1997, Formal Methods Syst. Des..