Rateless Coding for Arbitrary Channel Mixtures With Decoder Channel State Information

Rateless coding has recently been the focus of much practical as well as theoretical research. In this paper, rateless codes are shown to find a natural application in channels where the channel law varies unpredictably. Such unpredictability means that to ensure reliable communication block codes are limited by worst case channel variations. However, the dynamic decoding nature of rateless codes allows them to adapt opportunistically to channel variations. If the channel state selector is not malicious, but also not predictable, decoding can occur earlier, producing a rate of communication that can be much higher than the worst case. The application of rateless or ldquofountainrdquo codes to the binary erasure channel (BEC) can be understood as an application of these ideas. Further, this sort of decoding can be usefully understood as an incremental form of erasure decoding. The use of ideas of erasure decoding result in a significant increase in reliability.

[1]  Prakash Narayan,et al.  Reliable Communication Under Channel Uncertainty , 1998, IEEE Trans. Inf. Theory.

[2]  Michael Horstein,et al.  Sequential transmission using noiseless feedback , 1963, IEEE Trans. Inf. Theory.

[3]  Omid Etesami,et al.  Raptor codes on symmetric channels , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[4]  Meir Feder,et al.  Communicating using feedback over a binary channel with arbitrary noise sequence , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[5]  Emre Telatar,et al.  Variable length coding over an unknown channel , 2006, IEEE Transactions on Information Theory.

[6]  Michael Luby,et al.  LT codes , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[7]  Emina Soljanin,et al.  Reliable channel regions for good binary codes transmitted over parallel channels , 2006, IEEE Transactions on Information Theory.

[8]  Michael Luby,et al.  A digital fountain approach to reliable distribution of bulk data , 1998, SIGCOMM '98.

[9]  Emina Soljanin,et al.  LDPC code ensembles for incremental redundancy hybrid ARQ , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[10]  Frank R. Kschischang,et al.  A capacity-approaching hybrid ARQ scheme using turbo codes , 1999, Seamless Interconnection for Universal Services. Global Telecommunications Conference. GLOBECOM'99. (Cat. No.99CH37042).

[11]  Giuseppe Caire,et al.  Incremental redundancy hybrid ARQ schemes based on low-density parity-check codes , 2004, IEEE Transactions on Communications.

[12]  Emre Telatar,et al.  A feedback strategy for binary symmetric channels , 2002, Proceedings IEEE International Symposium on Information Theory,.

[13]  Idan Goldenberg,et al.  Coding for Parallel Channels: Gallager Bounds and Applications to Turbo-Like Codes , 2007, IEEE Transactions on Information Theory.

[14]  Laurence B. Milstein,et al.  On the performance of hybrid FEC/ARQ systems using rate compatible punctured turbo (RCPT) codes , 2000, IEEE Trans. Commun..

[15]  G. David Forney,et al.  Exponential error bounds for erasure, list, and decision feedback schemes , 1968, IEEE Trans. Inf. Theory.

[16]  Joong Bum Rhim,et al.  Fountain Codes , 2010 .

[17]  Jonathan S. Yedidia,et al.  Rateless codes on noisy channels , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[18]  Giuseppe Caire,et al.  The throughput of hybrid-ARQ protocols for the Gaussian collision channel , 2001, IEEE Trans. Inf. Theory.

[19]  Anand D. Sarwate,et al.  Using zero-rate feedback on binary additive channels with individual noise sequences , 2007, 2007 IEEE International Symposium on Information Theory.

[20]  Stark C. Draper Universal Incremental Slepian-Wolf Coding , 2004 .

[21]  Emre Telatar,et al.  Optimal feedback schemes over unknown channels , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[22]  Nadav Shulman,et al.  Communication over an unknown channel via common broadcasting , 2003 .

[23]  Imre Csiszár,et al.  Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .

[24]  N. Varnica,et al.  Incremental Redundancy Hybrid ARQ with LDPC and Raptor Codes , 2005 .

[25]  L. Goddard Information Theory , 1962, Nature.

[26]  RUDOLF AHLSWEDE Arbitrarily varying channels with states sequence known to the sender , 1986, IEEE Trans. Inf. Theory.

[27]  Brendan J. Frey,et al.  Efficient variable length channel coding for unknown DMCs , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[28]  D. A. Bell,et al.  Information Theory and Reliable Communication , 1969 .