Fundamental properties of fractional derivatives via pochhammer integrals

In this paper, various representations of fractional differentiation are explored, and a definition using Pochhammer contour integrals emerges as deserving special emphasis. The analyticity of Dαzpf(z) and Dαzpln z f(z) is investigated with reference to the three variables z, α, and p. The validity of the operation DβDα=Dα+α is studied. An improvement in the Leibniz rule for the fractional derivative of the product of two functions published previously is given.

[1]  L. Pochhammer Ueber eine Classe von Integralen mit geschlossener Integrationscurve , 1890 .

[2]  Eugene Stephens The Elementary Theory of Operational Mathematics , 1938 .

[3]  Thomas J. Osler,et al.  A Further Extension of the Leibniz Rule to Fractional Derivatives and Its Relation to Parseval’s Formula , 1972 .

[4]  Thomas J. Osler,et al.  Fractional Derivatives and Leibniz Rule , 1971 .

[5]  Thomas J. Osler,et al.  An integral analogue of Taylor’s series and its use in computing Fourier transforms , 1972 .

[6]  The fractional derivative via entire functions , 1971 .

[7]  A. Erdélyi,et al.  Tables of integral transforms , 1955 .

[8]  Thomas J. Osler,et al.  A Correction to Leibniz Rule for Fractional Derivatives , 1973 .

[9]  L. Pochhammer,et al.  Ueber ein Integral mit doppeltem Umlauf , 1890 .

[10]  Thomas J. Osler,et al.  The Integral Analog of the Leibniz Rule , 1972 .

[11]  L. Pochhammer,et al.  Zur Theorie der Euler'schen Integrale , 1890 .

[12]  Wilfred Kaplan,et al.  Introduction to analytic functions , 1969 .

[13]  Thomas J. Osler,et al.  Leibniz Rule for Fractional Derivatives Generalized and an Application to Infinite Series , 1970 .

[14]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[15]  T. Osler Taylor’s Series Generalized for Fractional Derivatives and Applications , 1971 .

[16]  Thomas J. Osler,et al.  The Fractional Derivative of a Composite Function , 1970 .

[17]  Arthur S. Hathaway,et al.  A COURSE IN MODERN ANALYSIS. , 1903 .

[18]  Charles Sturm Cours d'analyse de l'école polytechnique Tome 1 , 1873 .