Fundamental properties of fractional derivatives via pochhammer integrals
暂无分享,去创建一个
[1] L. Pochhammer. Ueber eine Classe von Integralen mit geschlossener Integrationscurve , 1890 .
[2] Eugene Stephens. The Elementary Theory of Operational Mathematics , 1938 .
[3] Thomas J. Osler,et al. A Further Extension of the Leibniz Rule to Fractional Derivatives and Its Relation to Parseval’s Formula , 1972 .
[4] Thomas J. Osler,et al. Fractional Derivatives and Leibniz Rule , 1971 .
[5] Thomas J. Osler,et al. An integral analogue of Taylor’s series and its use in computing Fourier transforms , 1972 .
[6] The fractional derivative via entire functions , 1971 .
[7] A. Erdélyi,et al. Tables of integral transforms , 1955 .
[8] Thomas J. Osler,et al. A Correction to Leibniz Rule for Fractional Derivatives , 1973 .
[9] L. Pochhammer,et al. Ueber ein Integral mit doppeltem Umlauf , 1890 .
[10] Thomas J. Osler,et al. The Integral Analog of the Leibniz Rule , 1972 .
[11] L. Pochhammer,et al. Zur Theorie der Euler'schen Integrale , 1890 .
[12] Wilfred Kaplan,et al. Introduction to analytic functions , 1969 .
[13] Thomas J. Osler,et al. Leibniz Rule for Fractional Derivatives Generalized and an Application to Infinite Series , 1970 .
[14] Edmund Taylor Whittaker,et al. A Course of Modern Analysis , 2021 .
[15] T. Osler. Taylor’s Series Generalized for Fractional Derivatives and Applications , 1971 .
[16] Thomas J. Osler,et al. The Fractional Derivative of a Composite Function , 1970 .
[17] Arthur S. Hathaway,et al. A COURSE IN MODERN ANALYSIS. , 1903 .
[18] Charles Sturm. Cours d'analyse de l'école polytechnique Tome 1 , 1873 .