Revisiting the Phase Curves of WASP-43b: Confronting Re-analyzed Spitzer Data with Cloudy Atmospheres

Recently acquired Hubble and Spitzer phase curves of the short-period hot Jupiter WASP-43b make it an ideal target for confronting theory with data. On the observational front, we re-analyze the 3.6 and 4.5 μm Spitzer phase curves and demonstrate that our improved analysis better removes residual red noise due to intra-pixel sensitivity, which leads to greater fluxes emanating from the nightside of WASP-43b, thus reducing the tension between theory and data. On the theoretical front, we construct cloud-free and cloudy atmospheres of WASP-43b using our Global Circulation Model (GCM), THOR, which solves the non-hydrostatic Euler equations (compared to GCMs that typically solve the hydrostatic primitive equations). The cloud-free atmosphere produces a reasonable fit to the dayside emission spectrum. The multi-phase emission spectra constrain the cloud deck to be confined to the nightside and have a finite cloud-top pressure. The multi-wavelength phase curves are naturally consistent with our cloudy atmospheres, except for the 4.5 μm phase curve, which requires the presence of enhanced carbon dioxide in the atmosphere of WASP-43b. Multi-phase emission spectra at higher spectral resolution, as may be obtained using the James Webb Space Telescope, and a reflected-light phase curve at visible wavelengths would further constrain the properties of clouds in WASP-43b.

[1]  Jonathan Tennyson,et al.  HITEMP, the high-temperature molecular spectroscopic database , 2010 .

[2]  Ansgar Reiners,et al.  A new extensive library of PHOENIX stellar atmospheres and synthetic spectra , 2013, 1303.5632.

[3]  Kevin Heng,et al.  Atmospheric circulation of tidally locked exoplanets: a suite of benchmark tests for dynamical solvers , 2010, 1010.1257.

[4]  Björn Benneke,et al.  A map of the large day–night temperature gradient of a super-Earth exoplanet , 2016, Nature.

[5]  Vivien Parmentier,et al.  Pseudo 2D chemical model of hot-Jupiter atmospheres: application to HD 209458b and HD 189733b , 2014, 1403.0121.

[6]  Shang-min Tsai,et al.  THREE-DIMENSIONAL STRUCTURES OF EQUATORIAL WAVES AND THE RESULTING SUPER-ROTATION IN THE ATMOSPHERE OF A TIDALLY LOCKED HOT JUPITER , 2014, 1405.0003.

[7]  S. Grimm,et al.  THOR: A NEW AND FLEXIBLE GLOBAL CIRCULATION MODEL TO EXPLORE PLANETARY ATMOSPHERES , 2016, 1607.05535.

[8]  Thomas J. Loredo,et al.  TRANSIT AND ECLIPSE ANALYSES OF THE EXOPLANET HD 149026b USING BLISS MAPPING , 2011, 1108.2057.

[9]  D. Juncher,et al.  Modelling the local and global cloud formation on HD 189733b , 2015, 1505.06576.

[10]  P. Read,et al.  Exploring the Venus global super-rotation using a comprehensive general circulation model , 2016, 1609.06549.

[11]  Jacob L. Bean,et al.  SPITZER PHASE CURVE CONSTRAINTS FOR WASP-43b AT 3.6 AND 4.5 μm , 2016, 1608.00056.

[12]  Chinese Academy of Sciences,et al.  GROUND-BASED DETECTIONS OF THERMAL EMISSION FROM THE DENSE HOT JUPITER WASP-43b IN THE H AND Ks BANDS , 2013, 1305.1643.

[13]  K. Heng,et al.  ANALYTICAL MODELS OF EXOPLANETARY ATMOSPHERES. II. RADIATIVE TRANSFER VIA THE TWO-STREAM APPROXIMATION , 2014, 1405.0026.

[14]  Drake Deming,et al.  REPEATABILITY AND ACCURACY OF EXOPLANET ECLIPSE DEPTHS MEASURED WITH POST-CRYOGENIC SPITZER , 2016, 1601.05101.

[15]  Jacob L. Bean,et al.  THE ATMOSPHERIC CIRCULATION OF THE HOT JUPITER WASP-43b: COMPARING THREE-DIMENSIONAL MODELS TO SPECTROPHOTOMETRIC DATA , 2014, 1410.2382.

[16]  Sara Seager,et al.  Thermal structure of an exoplanet atmosphere from phase-resolved emission spectroscopy , 2014, Science.

[17]  N. Wood,et al.  The unified model, a fully-compressible, non-hydrostatic, deep atmosphere global circulation model, applied to hot Jupiters - ENDGame for a HD 209458b test case , 2014 .

[18]  P. Read,et al.  A new, fast and flexible radiative transfer method for Venus general circulation models , 2015 .

[19]  Jiangnan Li,et al.  On the effective solar pathlength , 2006 .

[20]  D. Queloz,et al.  A global analysis of Spitzer and new HARPS data confirms the loneliness and metal-richness of GJ 436 b , 2014, 1409.4038.

[21]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[22]  Brice-Olivier Demory,et al.  Variability in the super-Earth 55 Cnc e , 2015, 1505.00269.

[23]  Sara Seager,et al.  A PRECISE WATER ABUNDANCE MEASUREMENT FOR THE HOT JUPITER WASP-43b , 2014, 1410.2255.

[24]  David Charbonneau,et al.  ATMOSPHERIC CIRCULATION OF HOT JUPITERS: COUPLED RADIATIVE-DYNAMICAL GENERAL CIRCULATION MODEL SIMULATIONS OF HD 189733b and HD 209458b , 2008, 0809.2089.

[25]  O. Umurhan,et al.  Intercomparison of general circulation models for hot extrasolar planets , 2012, 1311.5134.

[26]  K. Heng,et al.  Atmospheric circulation of tidally locked exoplanets: II. Dual-band radiative transfer and convective adjustment , 2011, 1105.4065.

[27]  Jacob L. Bean,et al.  HELIOS: AN OPEN-SOURCE, GPU-ACCELERATED RADIATIVE TRANSFER CODE FOR SELF-CONSISTENT EXOPLANETARY ATMOSPHERES , 2016, 1606.05474.

[28]  Laurence S. Rothman,et al.  New section of the HITRAN database: Collision-induced absorption (CIA) , 2012 .

[29]  J. Harder,et al.  Comparative Climatology of Terrestrial Planets , 2014 .

[30]  The Spitzer search for the transits of HARPS low-mass planets - II. Null results for 19 planets , 2017, 1701.01303.

[31]  L. Polvani,et al.  EQUATORIAL SUPERROTATION ON TIDALLY LOCKED EXOPLANETS , 2011, 1103.3101.

[32]  A time-dependent radiative model of HD 209458b , 2004, astro-ph/0409468.

[33]  A. Collier Cameron,et al.  The TRAPPIST survey of southern transiting planets. I. Thirty eclipses of the ultra-short period planet WASP-43 b , 2012, 1201.2789.

[34]  A. Cameron,et al.  SPITZER OBSERVATIONS OF THE THERMAL EMISSION FROM WASP-43b , 2013, 1302.7003.

[35]  Peter H. Hauschildt,et al.  Model atmospheres for M (sub)dwarf stars. 1: The base model grid , 1995, astro-ph/9601150.

[36]  Mark Clampin,et al.  INFRARED TRANSMISSION SPECTROSCOPY OF THE EXOPLANETS HD 209458b AND XO-1b USING THE WIDE FIELD CAMERA-3 ON THE HUBBLE SPACE TELESCOPE , 2013, 1302.1141.

[37]  I. Dobbs-Dixon,et al.  Dynamic mineral clouds on HD 189733b I. 3D RHD with kinetic, non-equilibrium cloud formation , 2016, 1603.09098.

[38]  T. Henning,et al.  Ground-based detections of thermal emission from the dense hot Jupiter WASP-43b in H and Ks , 2013 .

[39]  Sara Seager,et al.  INFERENCE OF INHOMOGENEOUS CLOUDS IN AN EXOPLANET ATMOSPHERE , 2013, 1309.7894.

[40]  A. Lacis,et al.  A description of the correlated k distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres , 1991 .

[41]  Accuracy tests of radiation schemes used in hot Jupiter global circulation models , 2014, 1402.0814.

[42]  Vivien Parmentier,et al.  TRANSITIONS IN THE CLOUD COMPOSITION OF HOT JUPITERS , 2016, 1602.03088.

[43]  James G. Ingalls,et al.  Intra-pixel gain variations and high-precision photometry with the Infrared Array Camera (IRAC) , 2012, Other Conferences.

[44]  B. Demory,et al.  Optical phase curves as diagnostics for aerosol composition in exoplanetary atmospheres , 2016, 1601.03050.

[45]  Eric Agol,et al.  Three-dimensional radiative-hydrodynamical simulations of the highly irradiated short-period exoplanet HD 189733b , 2012, 1211.1709.

[46]  K. Heng,et al.  Atmospheric Dynamics of Hot Exoplanets , 2014, 1407.4150.

[47]  Curtis S. Cooper,et al.  Dynamic Meteorology at the Photosphere of HD 209458b , 2005, astro-ph/0502476.