The Adiabatic Invariant in Classical Mechanics
暂无分享,去创建一个
[1] J. Henrard,et al. Colombo's top , 1987 .
[2] G. Paladin,et al. Advances in Nonlinear Dynamics and Stochastic Processes II , 1987 .
[3] A. Lemaitre,et al. A perturbative treatment of the 21 Jovian resonance , 1987 .
[4] J. Hannay. Accuracy loss of action invariance in adiabatic change of a one-freedom Hamiltonian , 1986 .
[5] Cary,et al. Adiabatic-invariant change due to separatrix crossing. , 1986, Physical review. A, General physics.
[6] A. Lemaitre,et al. A perturbation method for problems with two critical arguments , 1986 .
[7] Cary,et al. Change of the adiabatic invariant due to separatrix crossing. , 1986, Physical review letters.
[8] L. Galgani,et al. Rigorous estimates for the series expansions of Hamiltonian perturbation theory , 1985 .
[9] J. Wisdom. A perturbative treatment of motion near the 3/1 commensurability , 1985 .
[10] Menyuk,et al. Particle motion in the field of a modulated wave. , 1985, Physical review. A, General physics.
[11] D. Escande. Stochasticity in classical Hamiltonian systems: Universal aspects , 1985 .
[12] D. Davis,et al. Orbital resonances in the solar nebula - Implications for planetary accretion , 1985 .
[13] A. Lemaitre. Formation of the Kirkwood gaps in the asteroid belt , 1984 .
[14] S. Ferraz-Mello,et al. Motion of two planets with periods commensurable in the ratio 2∶1 solutions of the hori auxiliary system , 1984 .
[15] P. Goldreich,et al. A simple derivation of capture probabilities for the J+1:J and J+2:J orbit-orbit resonance problems , 1984 .
[16] A. Lemaitre. High-order resonances in the restricted three-body problem , 1984 .
[17] J. Henrard,et al. On Brown's conjecture , 1983 .
[18] J. Wisdom,et al. Chaotic behavior and the origin of the 3/1 Kirkwood gap , 1983 .
[19] A. Lemaitre,et al. A mechanism of formation for the Kirkwood gaps , 1983 .
[20] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[21] A. Lemaitre,et al. A second fundamental model for resonance , 1983 .
[22] Robert G. Littlejohn,et al. Variational principles of guiding centre motion , 1983, Journal of Plasma Physics.
[23] A. Lichtenberg,et al. Regular and Stochastic Motion , 1982 .
[24] C. Froeschlé,et al. Poynting-Robertson drag and orbital resonance , 1982 .
[25] J. Freidberg. Ideal magnetohydrodynamic theory of magnetic fusion systems , 1982 .
[26] R. Smoluchowski,et al. Motion of the Jovian commensurability resonances and the character of the celestial mechanics in the asteroid zone - Implication for kinematics and structure , 1982 .
[27] J. Henrard,et al. Capture into resonance: An extension of the use of adiabatic invariants , 1982 .
[28] S. Peale,et al. The tides of Io , 1981 .
[29] R. Smoluchowski,et al. Sweeping of the Jovian resonances and the evolution of the asteroids , 1980 .
[30] Robert G. Littlejohn,et al. A guiding center Hamiltonian: A new approach , 1979 .
[31] Charles F. Yoder,et al. How tidal heating in Io drives the galilean orbital resonance locks , 1979, Nature.
[32] B. Chirikov. A universal instability of many-dimensional oscillator systems , 1979 .
[33] T. J. Burns. On the rotation of Mercury , 1979 .
[34] J. Burns,et al. Past obliquity oscillations of Mars: The role of the Tharsis Uplift , 1979 .
[35] S. Weidenschilling. The distribution of mass in the planetary system and solar nebula , 1977 .
[36] G. Stengle. Asymptotic Estimates for the Adiabatic Invariance of a Simple Oscillator , 1977 .
[37] R. E. Meyer. Adiabatic variation—Part V: Nonlinear near-periodic oscillator , 1976 .
[38] J. Henrard. Virtual singularities in the artificial satellite theory , 1974 .
[39] J. Henrard,et al. Equivalence for lie transforms , 1974 .
[40] S. Peale. Possible histories of the obliquity of Mercury , 1974 .
[41] C. F. Yoder. On the establishment and evolution of orbit-orbit resonances. Ph.D. Thesis , 1973 .
[42] R. Greenberg. Evolution of satellite resonances by tidal dissipation. , 1973 .
[43] W. Wasow. Adiabatic Invariance of a Simple Oscillator , 1973 .
[44] G. E. O. Giacaglia,et al. Perturbation Methods in Non-Linear Systems , 1972 .
[45] A. Sinclair. On the Origin of the Commensurabilities Amongst the Satellites of Saturn–II , 1972 .
[46] D. Stern. Classical Adiabatic Perturbation Theory , 1971 .
[47] R. Aamodt. Particle Containment in Mirror Traps in the Presence of Fluctuating Electric Fields , 1971 .
[48] Jürgen Moser,et al. Lectures on Celestial Mechanics , 1971 .
[49] J. Henrard. On a perturbation theory using Lie transforms , 1970 .
[50] A. Toomre,et al. Some remarks on polar wandering , 1969 .
[51] S. Peale. Generalized Cassini's laws , 1969 .
[52] R. R. Allen. Evolution of Mimas-Tethys Commensurability , 1969 .
[53] André Deprit,et al. Canonical transformations depending on a small parameter , 1969 .
[54] I. Shapiro,et al. Spin-orbit resonance of Mercury , 1969 .
[55] R. Best. On the motion of charged particles in a slightly damped sinusoidal potential wave , 1968 .
[56] William Hamilton Jefferys,et al. Perturbation Theory for Strongly Perturbed Dynamical Systems. 1. , 1968 .
[57] André Deprit,et al. Free Rotation of a Rigid Body Studied in the Phase Plane , 1967 .
[58] Gen-Ichiro Hori,et al. Theory of general perturbations with unspecified canonical variables , 1966 .
[59] Peter Goldreich,et al. Spin-orbit coupling in the solar system , 1966 .
[60] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[61] P. Goldreich. Final spin states of planets and satellites. , 1966 .
[62] G. Colombo,et al. Rotational Period of the Planet Mercury , 1965, Nature.
[63] I. Shapiro,et al. The Rotation of the Planet Mercury , 1965 .
[64] S. Rasool,et al. Rotation Period of the Planet Mercury , 1965, Nature.
[65] P. Goldreich,et al. An Explanation of the Frequent Occurrence of Commensurable Mean Motions in the Solar System , 1965 .
[66] Helmut Rüßmann. Über das Verhalten analytischer Hamiltonscher Differentialgleichungen in der Nähe einer Gleichgewichtslösung , 1964 .
[67] J. Littlewood,et al. Lorentz's pendulum problem , 1963 .
[68] M. Kruskal,et al. Asymptotic Theory of Hamiltonian and other Systems with all Solutions Nearly Periodic , 1962 .
[69] G. M. Clemence,et al. Methods of Celestial Mechanics , 1962 .
[70] J. Crank. Tables of Integrals , 1962 .
[71] B. Chirikov. The Passage of a Nonlinear Oscillating System through Resonance , 1959 .
[72] C. S. Gardner. ADIABATIC INVARIANTS OF PERIODIC CLASSICAL SYSTEMS , 1959 .
[73] A. Lenard,et al. Adiabatic invariance to all orders , 1959 .
[74] J. Moser,et al. On the generalization of a theorem of A. Liapounoff , 1958 .
[75] Russell M. Kulsrud,et al. Adiabatic Invariant of the Harmonic Oscillator , 1957 .
[76] M. Urabe. The Least Upper Bound of a Damping Coefficient Ensuring the Existence of a Periodic Motion of a Pendulum under Constant Torque , 1955 .
[77] M. Urabe. Infinitesimal Deformation of the Periodic Solution of the Second Kind and its Application to the Equation of a Pendulum , 1954 .
[78] H. C. Plummer. The Analytical Foundations of Celestial Mechanics , 1942, Nature.
[79] V. Fock,et al. Beweis des Adiabatensatzes , 1928 .
[80] J. Jeans. The Effect of Varying Mass on a Binary System , 1925 .
[81] H. Kneser. Die adiabatische Invarianz des Phasenintegrals bei einem Freiheitsgrad , 1924 .
[82] H. Poincaré,et al. Les méthodes nouvelles de la mécanique céleste , 1899 .
[83] Edmund Taylor Whittaker,et al. A Treatise on the Analytical Dynamics of Particles and Rigid Bodies: INDEX OF TERMS EMPLOYED , 1988 .
[84] S. Peggs,et al. NONLINEAR PROBLEMS IN ACCELERATOR PHYSICS , 1986 .
[85] D. Escande. Change of adiabatic invariant at separatrix crossing; application to slow hamiltonian chaos , 1985 .
[86] A. Politi,et al. Advances in Nonlinear Dynamics and Stochastic Processes , 1985 .
[87] L. Kovrizhnykh. Progress in Stellarator theory , 1984 .
[88] V. V. Markellos,et al. Dynamical trapping and evolution in the solar system; Proceedings of the Seventy-fourth Colloquium, Gerakini, Greece, August 30-September 2, 1982 , 1983 .
[89] C. Froeschlé,et al. Trapping time of resonant orbits in presence of Poynting-Robertson drag. , 1983 .
[90] J. Henrard. The Adiabatic Invariant: Its Use in Celestial Mechanics , 1982 .
[91] C. F. Yoder. Diagrammatic theory of transition of pendulum like systems , 1979 .
[92] Eduard L. Stiefel,et al. Methoden der analytischen Störungsrechnung und ihre Anwendungen , 1978 .
[93] R. Greenberg. Orbit-orbit resonances in the solar system - Varieties and similarities , 1977 .
[94] S. Peale. Orbital Resonances in the Solar System , 1976 .
[95] K. Meyer,et al. Adiabatic Invariants for Linear Hamiltonian Systems , 1975 .
[96] A. Neishtadt,et al. Passage through a separatrix in a resonance problem with a slowly-varying parameter , 1975 .
[97] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[98] W. Ward,et al. I. The formation of planetesimals. II. Tidal friction and generalized Cassini's laws in the solar system , 1973 .
[99] R. Aamodt. MIRROR CONTAINMENT WITH LOW-FREQUENCY SHORT-WAVELENGTH FLUCTUATIONS. , 1972 .
[100] J. Greene,et al. Probability of Trapping-State Transitions in a Toroidal Device , 1971 .
[101] J. Henrard,et al. CONSTRUCTION OF ORBITS ASYMPTOTIC TO A PERIODIC ORBIT , 1969 .
[102] V. I. Arnolʹd,et al. Ergodic problems of classical mechanics , 1968 .
[103] G. Colombo,et al. Cassini's second and third laws. , 1967 .
[104] S. E. Khaikin,et al. Theory of Oscillators , 1966 .
[105] J. Schubart. Special cases of the restricted problem of three bodies , 1966 .
[106] P. Message. On nearly-commensurable periods in the restricted problem of three bodies, with calculations of the long-period variations in the interior 2:1 case , 1966 .
[107] W. Wasow. Asymptotic expansions for ordinary differential equations , 1965 .
[108] N. Bogolyubov,et al. Asymptotic Methods in the Theory of Nonlinear Oscillations , 1961 .
[109] H. Alfvén. Cosmical Electrodynamics , 1950 .
[110] N. N. Bogoli︠u︡bov,et al. Introduction to non-linear mechanics , 1943 .
[111] P. Ehrenfest. Adiabatische Invarianten und Quantentheorie , 1916 .
[112] H. Poincaré,et al. Leçons sur les hypothèses cosmogoniques , 1911 .