Classical and All-floating FETI Methods with Applications to Biomechanical Models

This work deals with domain decomposition solvers, more precisely the finite element tearing and interconnecting (FETI) approach, to simulate the elastic behavior of cardiovascular tissues, such as the myocardium or the artery. These biological materials are characterized by anisotropic and nonlinear material properties due to preferential orientations of collagen and muscle fibers in the tissue. The high complexity of the underlying nonlinear equations as well as fine geometrical structures of the cardiovascular components demand fast solving algorithms, where FETI is an efficient choice. This approach shows high performance and enables a natural parallelization to solve the nonlinear elasticity problem. The strategy of the FETI method is to decompose the computational domain into a finite number of non-overlapping subdomains. Therein the corresponding local problems can be handled efficiently by direct solvers. The reduced global system, that is related to discrete Lagrange multipliers on the interface of the subdomains, is then solved with a parallel Krylov space method to compute the desired solution. This is, in the case of elasticity, the stress and subsequently, in a postprocessing step, we deduce the displacement locally. For the global iterative method suitable preconditioning is a substantial factor. Besides a simple lumped preconditioner and an optimal Dirichlet preconditioner a novel BEM based preconditioner, formed by local hypersingular boundary integral operators, is considered. The idea behind this preconditioner is the approximation of Steklov–Poincaré operators, the basis for the optimal Dirichlet preconditioning, by computationally less expensive hypersingular operators. Another innovative aspect is the usage of all-floating FETI, a variant of classical FETI, for nonlinear soft tissue mechanics. This approach, where the Dirichlet boundary acts as a part of the interface, shows significant advantages in the implementation and in the convergence of the global iterative method which is evidenced by numerical examples. As realistic and clinically relevant applications we present passive inflation experiments, comparable to stenting or angioplasty procedures, using anatomically detailed geometries of arteries and the myocardium.

[1]  Antje Baer,et al.  Direct Methods In The Calculus Of Variations , 2016 .

[2]  Gerhard A Holzapfel,et al.  Comparison of a multi-layer structural model for arterial walls with a fung-type model, and issues of material stability. , 2004, Journal of biomechanical engineering.

[3]  J. Nitsche On Korn's second inequality , 1981 .

[4]  Patrick Amestoy,et al.  Hybrid scheduling for the parallel solution of linear systems , 2006, Parallel Comput..

[5]  Gerhard Sommer,et al.  Layer-Specific 3D Residual Deformations of Human Aortas with Non-Atherosclerotic Intimal Thickening , 2007, Annals of Biomedical Engineering.

[6]  H. Demiray A note on the elasticity of soft biological tissues. , 1972, Journal of biomechanics.

[7]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[8]  J. C. Simo,et al.  Variational and projection methods for the volume constraint in finite deformation elasto-plasticity , 1985 .

[9]  Olaf Steinbach,et al.  Boundary Element Tearing and Interconnecting Methods , 2003, Computing.

[10]  Y. Fung Elasticity of soft tissues in simple elongation. , 1967, The American journal of physiology.

[11]  Olof B. Widlund,et al.  Dual and dual-primal FETI methods for elliptic problems with discontinuous co-efficients in three dimensions , 2001 .

[12]  P J Hunter,et al.  Myocardial material parameter estimation-a comparative study for simple shear. , 2006, Journal of biomechanical engineering.

[13]  A. Klawonn,et al.  On the mechanical modeling of anisotropic biological soft tissue and iterative parallel solution strategies , 2010 .

[14]  Peter Wriggers,et al.  Nichtlineare Finite-Element-Methoden , 2001 .

[15]  O. Schenk,et al.  ON FAST FACTORIZATION PIVOTING METHODS FOR SPARSE SYMMETRI C INDEFINITE SYSTEMS , 2006 .

[16]  P. G. Ciarlet,et al.  Three-dimensional elasticity , 1988 .

[17]  Gernot Plank,et al.  Automatically Generated, Anatomically Accurate Meshes for Cardiac Electrophysiology Problems , 2009, IEEE Transactions on Biomedical Engineering.

[18]  M. Pachter,et al.  Optimal control of partial differential equations , 1980 .

[19]  Peter Deuflhard,et al.  Newton Methods for Nonlinear Problems , 2004 .

[20]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[21]  David A. Patterson,et al.  Computer Architecture: A Quantitative Approach , 1969 .

[22]  L. Pavarino,et al.  Overlapping Schwarz methods for mixed linear elasticity and Stokes problems , 1998 .

[23]  J D Humphrey,et al.  Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysms. , 2012, Journal of biomechanics.

[24]  I. Hlavácek,et al.  Mathematical Theory of Elastic and Elasto Plastic Bodies: An Introduction , 1981 .

[25]  W. Hackbusch Iterative Lösung großer schwachbesetzter Gleichungssysteme , 1991 .

[26]  Olaf Steinbach,et al.  Stability Estimates for Hybrid Coupled Domain Decomposition Methods , 2003 .

[27]  C. Bernardi,et al.  A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .

[28]  A. McCulloch,et al.  Finite element stress analysis of left ventricular mechanics in the beating dog heart. , 1995, Journal of biomechanics.

[29]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[30]  R. S. Rivlin,et al.  Large elastic deformations of isotropic materials. V. The problem of flexure , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[31]  F. Thomasset Finite element methods for Navier-Stokes equations , 1980 .

[32]  Leonard Eugene Dickson,et al.  A Theory of Invariants , 1909 .

[33]  J. Remacle,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[34]  Olaf Steinbach,et al.  Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements , 2007 .

[35]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[36]  Olaf Steinbach,et al.  FETI Methods for the Simulation of Biological Tissues , 2013, Domain Decomposition Methods in Science and Engineering XX.

[37]  R. Ogden,et al.  Constitutive modelling of arteries , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[38]  A. Klawonn,et al.  Highly scalable parallel domain decomposition methods with an application to biomechanics , 2010 .

[39]  Johannes A. G. Rhodin,et al.  Architecture of the Vessel Wall , 1980 .

[40]  Olaf Steinbach,et al.  Mechanical Properties of Healthy and Diseased Human Arteries - Insights into Human Arterial Biomechanics and Related Material Modeling , 2010 .

[41]  O. Widlund,et al.  FETI and Neumann--Neumann Iterative Substructuring Methods: Connections and New Results , 1999 .

[42]  Ray W. Ogden,et al.  Instabilities and loss of ellipticity in fiber-reinforced compressible non-linearly elastic solids under plane deformation , 2003 .

[43]  Gerhard A. Holzapfel,et al.  Structural and Numerical Models for the (Visco)elastic Response of Arterial Walls with Residual Stresses , 2003 .

[44]  Olaf Schenk,et al.  Solving unsymmetric sparse systems of linear equations with PARDISO , 2002, Future Gener. Comput. Syst..

[45]  G. Brenn,et al.  Peng Li: Boundary Element Method for Wave Propagtion in Partially Saturated Poroelastic Continua , 2013 .

[46]  Olaf Steinbach,et al.  Martin Neumüller: Space-Time Methods , 2013 .

[47]  I. Babuska,et al.  Locking effects in the finite element approximation of elasticity problems , 1992 .

[48]  A. McCulloch,et al.  Modelling cardiac mechanical properties in three dimensions , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[49]  K. Hayashi Cardiovascular solid mechanics. Cells, tissues, and organs , 2003 .

[50]  G. Holzapfel,et al.  Methods to compute 3D residual stress distributions in hyperelastic tubes with application to arterial walls , 2010 .

[51]  Young,et al.  Extended confocal microscopy of myocardial laminae and collagen network , 1998, Journal of microscopy.

[52]  D. Rixen,et al.  FETI‐DP: a dual–primal unified FETI method—part I: A faster alternative to the two‐level FETI method , 2001 .

[53]  G. Brenn,et al.  Markus Winisch: Boundary Element Tearing and Interconnecting Methods for Acoustic and Electromagnetic Scattering , 2011 .

[54]  M. Mooney A Theory of Large Elastic Deformation , 1940 .

[55]  Olof B. Widlund,et al.  Dual‐primal FETI methods for linear elasticity , 2006 .

[56]  Yan Ningning Boundary Element Method for Boundary Control Problems , 2006, 2007 Chinese Control Conference.

[57]  V. E. Henson,et al.  BoomerAMG: a parallel algebraic multigrid solver and preconditioner , 2002 .

[58]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[59]  M. Itskov Tensor algebra and tensor analysis for engineers , 2007 .

[60]  Timothy A. Davis,et al.  A column pre-ordering strategy for the unsymmetric-pattern multifrontal method , 2004, TOMS.

[61]  Ulrich Langer,et al.  Coupled Finite and Boundary Element Domain Decomposition Methods , 2007 .

[62]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[63]  O. Zienkiewicz The Finite Element Method In Engineering Science , 1971 .

[64]  J. C. Simo,et al.  Numerical analysis and simulation of plasticity , 1998 .

[65]  R. S. Rivlin,et al.  Large elastic deformations of isotropic materials. I. Fundamental concepts , 1948, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[66]  J. C. Rice,et al.  On numerically accurate finite element solutions in the fully plastic range , 1990 .

[67]  Rüdiger Verfürth,et al.  Error estimates for a mixed finite element approximation of the Stokes equations , 1984 .

[68]  J. Bialek Nonlinear Continuum Mechanics for Finite Element Analysis , 1998 .

[69]  G. Of The All-floating BETI Method : Numerical Results , 2008 .

[70]  Robert Scheichl,et al.  Analysis of FETI methods for multiscale PDEs , 2008, Numerische Mathematik.

[71]  Anthony T. Patera,et al.  Nonconforming mortar element methods: Application to spectral discretizations , 1988 .

[72]  J. Ball Some Open Problems in Elasticity , 2002 .

[73]  Y C Fung,et al.  Three-dimensional stress distribution in arteries. , 1983, Journal of biomechanical engineering.

[74]  Stefan Hartmann,et al.  Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility , 2003 .

[75]  Olaf Steinbach,et al.  Michael Meßner: A Fast Multipole Galerkin Boundary Element Method for the Transient Heat Equation , 2014 .

[76]  J. Ball Convexity conditions and existence theorems in nonlinear elasticity , 1976 .

[77]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 1972 .

[78]  E Marchandise,et al.  Cardiovascular and lung mesh generation based on centerlines , 2013, International journal for numerical methods in biomedical engineering.

[79]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[80]  R. Ogden,et al.  Hyperelastic modelling of arterial layers with distributed collagen fibre orientations , 2006, Journal of The Royal Society Interface.

[81]  Michael Jung,et al.  Methode der finiten Elemente für Ingenieure , 2001 .

[82]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[83]  C. Truesdell Some Challenges Offered to Analysis by Rational Thermomechanics: Three Lectures for the International Symposium on Continuum Mechanics and Partial Differential equations , 1978 .

[84]  R. Rivlin Large elastic deformations of isotropic materials IV. further developments of the general theory , 1948, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[85]  K. Schellbach Probleme der Variationsrechnung. , 1851 .

[86]  Charbel Farhat,et al.  Implicit parallel processing in structural mechanics , 1994 .

[87]  Olaf Steinbach,et al.  The all-floating boundary element tearing and interconnecting method , 2009, J. Num. Math..

[88]  H. W. Weizsäcker,et al.  Biomechanical behavior of the arterial wall and its numerical characterization , 1998, Comput. Biol. Medicine.

[89]  B. Norrving,et al.  Global atlas on cardiovascular disease prevention and control. , 2011 .

[90]  J. Pasciak,et al.  Parallel multilevel preconditioners , 1990 .

[91]  Axel Klawonn,et al.  A Parallel Implementation of Dual-Primal FETI Methods for Three-Dimensional Linear Elasticity Using a Transformation of Basis , 2006, SIAM J. Sci. Comput..

[92]  D. Arnold Mixed finite element methods for elliptic problems , 1990 .

[93]  Oliver Rheinbach,et al.  Parallel Iterative Substructuring in Structural Mechanics , 2009 .

[94]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[95]  D. Rixen,et al.  A simple and efficient extension of a class of substructure based preconditioners to heterogeneous structural mechanics problems , 1999 .

[96]  G. Holzapfel Determination of material models for arterial walls from uniaxial extension tests and histological structure. , 2006, Journal of theoretical biology.

[97]  R. S. Rivlin,et al.  Large elastic deformations of isotropic materials VI. Further results in the theory of torsion, shear and flexure , 1949, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[98]  C. Farhat,et al.  A method of finite element tearing and interconnecting and its parallel solution algorithm , 1991 .

[99]  André Fortin,et al.  Comparison of the performance of some finite element discretizations for large deformation elasticity problems , 2010 .

[100]  Annie Raoult,et al.  Symmetry groups in nonlinear elasticity: an exercise in vintage mathematics , 2008 .

[101]  Niklas Gloeckner,et al.  Computational Continuum Mechanics , 2016 .

[102]  Ray W. Ogden,et al.  The influence of the invariant I8I8 on the stress deformation and ellipticity characteristics of doubly fiber-reinforced non-linearly elastic solids , 2006 .

[103]  J. Humphrey,et al.  On constitutive relations and finite deformations of passive cardiac tissue: I. A pseudostrain-energy function. , 1987, Journal of biomechanical engineering.

[104]  Bruce H Smaill,et al.  Automated imaging of extended tissue volumes using confocal microscopy , 2005, Microscopy research and technique.

[105]  W. Ritz Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik. , 1909 .

[106]  Olof B. Widlund,et al.  Selecting Constraints in Dual-Primal FETI Methods for Elasticity in Three Dimensions , 2005 .

[107]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[108]  A. C. Burton,et al.  The reason for the shape of the distensibility curves of arteries. , 1957, Canadian journal of biochemistry and physiology.

[109]  Raimund Erbel,et al.  Parallel simulation of patient‐specific atherosclerotic arteries for the enhancement of intravascular ultrasound diagnostics , 2012 .

[110]  C. Miehe,et al.  Aspects of the formulation and finite element implementation of large strain isotropic elasticity , 1994 .

[111]  Barry Smith,et al.  Domain Decomposition Methods for Partial Differential Equations , 1997 .

[112]  R. Ogden,et al.  A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models , 2000 .

[113]  Harro Heuser,et al.  Lehrbuch der Analysis Teil 2 , 2004 .

[114]  Gerhard A Holzapfel,et al.  Constitutive modelling of passive myocardium: a structurally based framework for material characterization , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[115]  Jacques Laminie,et al.  On the domain decomposition method for the generalized Stokes problem with continuous pressure , 2000 .

[116]  P. Hunter,et al.  Laminar structure of the heart: a mathematical model. , 1997, The American journal of physiology.

[117]  J D Humphrey,et al.  Mechanics of the arterial wall: review and directions. , 1995, Critical reviews in biomedical engineering.

[118]  C. Farhat,et al.  Optimal convergence properties of the FETI domain decomposition method , 1994 .

[119]  Donald Danielson Vectors And Tensors In Engineering And Physics: Second Edition , 1992 .

[120]  A. Klawonn,et al.  Modelling and convergence in arterial wall simulations using a parallel FETI solution strategy , 2008, Computer methods in biomechanics and biomedical engineering.

[121]  J. Mandel,et al.  Application of the parallel BDDC preconditioner to the Stokes flow , 2011, 1101.1775.

[122]  Stuart S. Antman The eversion of thick spherical shells , 1979 .

[123]  Z. Dostál,et al.  Cholesky decomposition with fixing nodes to stable computation of a generalized inverse of the stiffness matrix of a floating structure , 2011 .

[124]  George Herrmann,et al.  Linear Theory of Elasticity , 2000 .

[125]  Timothy A. Davis,et al.  Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.

[126]  T. Valent Boundary value problems of finite elasticity, local theorems on existence, uniqueness, and analytic dependence on data , 1987 .

[127]  T. Manteuffel,et al.  A taxonomy for conjugate gradient methods , 1990 .

[128]  Nicole Propst,et al.  Mathematical Foundations Of Elasticity , 2016 .

[129]  N. Meyers QUASI-CONVEX1TY AND LOWER SEMI-CONTINUITY OF MULTIPLE VARIATIONAL INTEGRALS OF ANY ORDER , 2010 .

[130]  I. LeGrice,et al.  Shear properties of passive ventricular myocardium. , 2002, American journal of physiology. Heart and circulatory physiology.

[131]  Stefan Wendl,et al.  Optimal Control of Partial Differential Equations , 2021, Applied Mathematical Sciences.

[132]  M. A. Jaswon Boundary Integral Equations , 1984 .

[133]  Martin J Bishop,et al.  Soft Tissue Modelling of Cardiac Fibres for Use in Coupled Mechano-Electric Simulations , 2007, Bulletin of mathematical biology.

[134]  Mikhail Itskov,et al.  On the theory of fourth-order tensors and their applications in computational mechanics , 2000 .

[135]  F. Yin,et al.  Ventricular wall stress. , 1981, Circulation research.

[136]  Ekkehard Ramm,et al.  Displacement dependent pressure loads in nonlinear finite element analyses , 1984 .

[137]  Kaare Brandt Petersen,et al.  The Matrix Cookbook , 2006 .

[138]  C. B. Morrey Multiple Integrals in the Calculus of Variations , 1966 .

[139]  M. Fortin,et al.  Finite Elements for the Stokes Problem , 2008 .

[140]  Clemens Pechstein,et al.  Finite and Boundary Element Tearing and Interconnecting Solvers for Multiscale Problems , 2012, Lecture Notes in Computational Science and Engineering.

[141]  Peter Regitnig,et al.  Mechanics of the human femoral adventitia including the high-pressure response. , 2002, American journal of physiology. Heart and circulatory physiology.

[142]  Patrick Laborde,et al.  An existence theorem for slightly compressible materials in nonlinear elasticity , 1988 .

[143]  G. Holzapfel,et al.  A polyconvex framework for soft biological tissues. Adjustment to experimental data , 2006 .

[144]  C. Truesdell,et al.  The Nonlinear Field Theories in Mechanics , 1968 .

[145]  G. Plank,et al.  A Novel Rule-Based Algorithm for Assigning Myocardial Fiber Orientation to Computational Heart Models , 2012, Annals of Biomedical Engineering.

[146]  David Rubin,et al.  Introduction to Continuum Mechanics , 2009 .

[147]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[148]  Olof B. Widlund,et al.  A Domain Decomposition Method with Lagrange Multipliers and Inexact Solvers for Linear Elasticity , 2000, SIAM J. Sci. Comput..

[149]  M. Itskov The Derivative with respect to a Tensor: some Theoretical Aspects and Applications , 2002 .

[150]  A. Klawonn,et al.  Augmented Lagrange methods for quasi‐incompressible materials—Applications to soft biological tissue , 2013, International journal for numerical methods in biomedical engineering.

[151]  Charles B. Morrey,et al.  QUASI-CONVEXITY AND THE LOWER SEMICONTINUITY OF MULTIPLE INTEGRALS , 1952 .

[152]  Olaf Steinbach,et al.  Classical and all‐floating FETI methods for the simulation of arterial tissues , 2014, International journal for numerical methods in engineering.

[153]  Gerhard A. Holzapfel,et al.  Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science , 2000 .

[154]  G. Starke Field-of-values analysis of preconditioned iterative methods for nonsymmetric elliptic problems , 1997 .

[155]  David J. Silvester,et al.  ANALYSIS OF LOCALLY STABILIZED MIXED FINITE-ELEMENT METHODS FOR THE STOKES PROBLEM , 1992 .

[156]  P. Neff,et al.  Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions , 2003 .

[157]  Raimund Erbel,et al.  Numerical Simulations of Arterial Walls Based on IVUS‐Data , 2009 .

[158]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[159]  A.J.M. Spencer,et al.  Constitutive Theory for Strongly Anisotropic Solids , 1984 .

[160]  Z. Dostál,et al.  Total FETI—an easier implementable variant of the FETI method for numerical solution of elliptic PDE , 2006 .

[161]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[162]  Ivan Hlaváček,et al.  On inequalities of Korn's type , 1970 .

[163]  Barbara I. Wohlmuth,et al.  A Mortar Finite Element Method Using Dual Spaces for the Lagrange Multiplier , 2000, SIAM J. Numer. Anal..

[164]  P. Hunter,et al.  Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. , 1995, The American journal of physiology.

[165]  J. Mandel,et al.  Convergence of a substructuring method with Lagrange multipliers , 1994 .

[166]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[167]  Hani Benhassine,et al.  A non-overlapping domain decomposition method for continuous-pressure mixed finite element approximations of the Stokes problem , 2011 .

[168]  Barbara Kaltenbacher,et al.  Iterative Solution Methods , 2015, Handbook of Mathematical Methods in Imaging.

[169]  D. Arnold Discretization by finite elements of a model parameter dependent problem , 1981 .

[170]  R. Ogden Non-Linear Elastic Deformations , 1984 .

[171]  Gernot Plank,et al.  Influence of myocardial fiber/sheet orientations on left ventricular mechanical contraction , 2013 .

[172]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[173]  P. Flory,et al.  Thermodynamic relations for high elastic materials , 1961 .

[174]  J D Humphrey,et al.  An evaluation of pseudoelastic descriptors used in arterial mechanics. , 1999, Journal of biomechanical engineering.