Parallel processors for planning under uncertainty

Our goal is to demonstrate for an important class of multistage stochastic models that three techniques — namely nested decomposition, Monte Carlo importance sampling, and parallel computing — can be effectively combined to solve this fundamental problem of large-scale linear programming.

[1]  E. Beale ON MINIMIZING A CONVEX FUNCTION SUBJECT TO LINEAR INEQUALITIES , 1955 .

[2]  A. Madansky Bounds on the Expectation of a Convex Function of a Multivariate Random Variable , 1959 .

[3]  George B. Dantzig,et al.  Decomposition Principle for Linear Programs , 1960 .

[4]  George B Dantzig,et al.  ON THE SOLUTION OF TWO-STAGE LINEAR PROGRAMS UNDER UNCERTAINTY. NOTES ON LINEAR PROGRAMMING AND EXTENSIONS. PART 55 , 1961 .

[5]  J. F. Benders Partitioning procedures for solving mixed-variables programming problems , 1962 .

[6]  G. Dantzig 23. A Decomposition Principle for Linear Programs , 1963 .

[7]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[8]  R. P. Harvey The decomposition principle for linear programs , 1964 .

[9]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[10]  H. Robbins,et al.  ON THE ASYMPTOTIC THEORY OF FIXED-WIDTH SEQUENTIAL CONFIDENCE INTERVALS FOR THE MEAN. , 1965 .

[11]  R. Wets Programming Under Uncertainty: The Equivalent Convex Program , 1966 .

[12]  R. Wets,et al.  Programming under Uncertainty and Stochastic Optimal Control , 1966 .

[13]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[14]  R. Wets,et al.  L-SHAPED LINEAR PROGRAMS WITH APPLICATIONS TO OPTIMAL CONTROL AND STOCHASTIC PROGRAMMING. , 1969 .

[15]  C. R. Glassey Nested Decomposition and Multi-Stage Linear Programs , 1973 .

[16]  Alan S. Manne,et al.  Nested decomposition for dynamic models , 1974, Math. Program..

[17]  A. Ben-Tal,et al.  Bounds on the Expectation of a Convex Function of a Random Variable: With Applications to Stochastic Programming , 1977, Oper. Res..

[18]  J. Birge Solution methods for stochastic dynamic linear programs , 1980 .

[19]  G. Dantzig,et al.  Large-scale linear programming : proceedings of a IIASA workshop, 2-6 June 1980 , 1981 .

[20]  James K. Ho,et al.  An advanced implementation of the Dantzig—Wolfe decomposition algorithm for linear programming , 1981, Math. Program..

[21]  Stephen S. Lavenberg,et al.  A Perspective on the Use of Control Variables to Increase the Efficiency of Monte Carlo Simulations , 1981 .

[22]  D. Stoyan,et al.  Solving stochastic programming problems with recourse including error bounds , 1982 .

[23]  Robert Fourer,et al.  Solving staircase linear programs by the simplex method, 1: Inversion , 1982, Math. Program..

[24]  Wittrock Advances in a nested decomposition algorithm for solving staircase linear programs. Technical report SOL 83-2 , 1983 .

[25]  Motohisa Funabashi,et al.  A basis factorization method for multi-stage linear programming problems with an application to optimal operation of an energy plant , 1983, The 22nd IEEE Conference on Decision and Control.

[26]  Robert Fourer,et al.  Solving staircase linear programs by the simplex method, 2: Pricing , 1983, Math. Program..

[27]  Paul Bratley,et al.  A guide to simulation , 1983 .

[28]  Y. Ermoliev Stochastic quasigradient methods and their application to system optimization , 1983 .

[29]  R. Fourer Staircase matrices and systems , 1984 .

[30]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[31]  John R. Birge,et al.  Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs , 1985, Oper. Res..

[32]  John R. Birge,et al.  Aggregation bounds in stochastic linear programming , 1985, Math. Program..

[33]  Reuven Y. Rubinstein,et al.  Efficiency of Multivariate Control Variates in Monte Carlo Simulation , 1985, Oper. Res..

[34]  R. Wets,et al.  Designing approximation schemes for stochastic optimization problems, in particular for stochastic programs with recourse , 1986 .

[35]  W. Ziemba,et al.  A tight upper bound for the expectation of a convex function of a multivariate random variable , 1986 .

[36]  R. Wets,et al.  On the Convergence in Distribution of Measurable Multifunctions Random Sets Normal Integrands, Stochastic Processes and Stochastic Infima , 1986 .

[37]  François V. Louveaux,et al.  Multistage stochastic programs with block-separable recourse , 1986 .

[38]  J. L. Nazareth,et al.  Algorithms for stochastic programs: The case of nonstochastic tenders , 1986 .

[39]  H. Niederreiter Multidimensional numerical integration using Pseudorandom numbers , 1986 .

[40]  G. Dantzig,et al.  A first order approach to a class of multi-time-period stochastic programming problems , 1986 .

[41]  S. M. Robinson,et al.  Stability in two-stage stochastic programming , 1987 .

[42]  J. Parida,et al.  A variational-like inequality for multifunctions with applications , 1987 .

[43]  Roger J.-B. Wets,et al.  Computing Bounds for Stochastic Programming Problems by Means of a Generalized Moment Problem , 1987, Math. Oper. Res..

[44]  Peter L. Jackson,et al.  Revised dantzig-wolfe decomposition for staircase-structured linear programs , 1987, Math. Program..

[45]  Y. Smeers,et al.  Optimal Investments for Electricity Generation: A Stochastic Model and a Test-Problem , 1988 .

[46]  Alexei A. Gaivoronski,et al.  Stochastic Quasigradient Methods and their Implementation , 1988 .

[47]  J. Birge,et al.  A separable piecewise linear upper bound for stochastic linear programs , 1988 .

[48]  Yuri Ermoliev,et al.  Stochastic programming, an introduction. Numerical techniques for stochastic optimization , 1988 .

[49]  Peter Kall,et al.  Approximation Techniques in Stochastic Programming , 1988 .

[50]  George B. Dantzig,et al.  Planning under uncertainty using parallel computing , 1988 .

[51]  Yuri Ermoliev,et al.  Numerical techniques for stochastic optimization , 1988 .

[52]  James K. Ho,et al.  Decomposition of linear programs using parallel computation , 1988, Math. Program..

[53]  J. Dupacová,et al.  ASYMPTOTIC BEHAVIOR OF STATISTICAL ESTIMATORS AND OF OPTIMAL SOLUTIONS OF STOCHASTIC OPTIMIZATION PROBLEMS , 1988 .

[54]  István Deák,et al.  Multidimensional Integration and Stochastic Programming , 1988 .

[55]  Robert Entriken A Parallel Decomposition Algorithm for Staircase Linear Programs , 1988 .

[56]  R. J-B. Wets,et al.  Large Scale Linear Programming Techniques , 1988 .

[57]  George B. Dantzig,et al.  The parallel decomposition of linear programs , 1989 .

[58]  Donald L. Iglehart,et al.  Importance sampling for stochastic simulations , 1989 .

[59]  Roger J.-B. Wets,et al.  Sublinear upper bounds for stochastic programs with recourse , 1987, Math. Program..

[60]  Michael J. Todd,et al.  Probabilistic Models for Linear Programming , 1991, Math. Oper. Res..

[61]  R. Wets,et al.  Epi‐consistency of convex stochastic programs , 1991 .

[62]  R. Tyrrell Rockafellar,et al.  Scenarios and Policy Aggregation in Optimization Under Uncertainty , 1991, Math. Oper. Res..