Long non-coding RNA H19 regulates FOXM1 expression by competitively binding endogenous miR-342-3p in gallbladder cancer

[1]  Shuai Zhao,et al.  Prohibitin overexpression predicts poor prognosis and promotes cell proliferation and invasion through ERK pathway activation in gallbladder cancer , 2016, Journal of experimental & clinical cancer research : CR.

[2]  D. Hose,et al.  FOXM1 is a therapeutic target for high-risk multiple myeloma , 2016, Leukemia.

[3]  F. She,et al.  CCR7 mediates the TNF-α-induced lymphatic metastasis of gallbladder cancer through the “ERK1/2 - AP-1” and “JNK - AP-1” pathways , 2016, Journal of experimental & clinical cancer research : CR.

[4]  Shouhua Wang,et al.  Long noncoding RNA H19 contributes to gallbladder cancer cell proliferation by modulated miR-194-5p targeting AKT2 , 2016, Tumor Biology.

[5]  Yiping Huang,et al.  Long Noncoding RNA H19 Promotes Osteoblast Differentiation Via TGF‐β1/Smad3/HDAC Signaling Pathway by Deriving miR‐675 , 2015, Stem cells.

[6]  K. L. Silva,et al.  FOXM1 targets XIAP and Survivin to modulate breast cancer survival and chemoresistance. , 2015, Cellular signalling.

[7]  Y. Yatabe,et al.  miR-342-3p regulates MYC transcriptional activity via direct repression of E2F1 in human lung cancer. , 2015, Carcinogenesis.

[8]  K. Bae,et al.  FOXM1-Induced PRX3 Regulates Stemness and Survival of Colon Cancer Cells via Maintenance of Mitochondrial Function. , 2015, Gastroenterology.

[9]  Haixiu Yang,et al.  Identification and validation of potential prognostic lncRNA biomarkers for predicting survival in patients with multiple myeloma , 2015, Journal of experimental & clinical cancer research : CR.

[10]  Binbin Lu,et al.  Long non-coding RNA Loc554202 induces apoptosis in colorectal cancer cells via the caspase cleavage cascades , 2015, Journal of experimental & clinical cancer research : CR.

[11]  F. Wang,et al.  Long non-coding RNA MEG3 functions as a competing endogenous RNA to regulate gastric cancer progression , 2015, Journal of experimental & clinical cancer research : CR.

[12]  A. Maker,et al.  Essential roles of FoxM1 in Ras-induced liver cancer progression and in cancer cells with stem cell features. , 2015, Journal of hepatology.

[13]  Sylvain Julien,et al.  H19 non coding RNA-derived miR-675 enhances tumorigenesis and metastasis of breast cancer cells by downregulating c-Cbl and Cbl-b , 2015, Oncotarget.

[14]  M. Moore,et al.  Single-Molecule Imaging Reveals that Argonaute Reshapes the Binding Properties of Its Nucleic Acid Guides , 2015, Cell.

[15]  Thomas M. Smith,et al.  SMN2 splice modulators enhance U1-pre-mRNA association and rescue SMA mice. , 2015, Nature chemical biology.

[16]  Li Zhang,et al.  The lncRNA H19 promotes epithelial to mesenchymal transition by functioning as miRNA sponges in colorectal cancer , 2015, Oncotarget.

[17]  H. Cai,et al.  A FOXM1 related long non-coding RNA contributes to gastric cancer cell migration , 2015, Molecular and Cellular Biochemistry.

[18]  Hiroshi M Sasaki,et al.  Defining fundamental steps in the assembly of the Drosophila RNAi enzyme complex , 2015, Nature.

[19]  Alon Chen,et al.  Determining the role of microRNAs in psychiatric disorders , 2015, Nature Reviews Neuroscience.

[20]  Liang Zhao,et al.  miR-342-3p affects hepatocellular carcinoma cell proliferation via regulating NF-κB pathway. , 2015, Biochemical and biophysical research communications.

[21]  Guihua Chen,et al.  Yes-Associated Protein Expression is a Predictive Marker for Recurrence of Hepatocellular Carcinoma after Liver Transplantation , 2015, Digestive Surgery.

[22]  Yan Zhang,et al.  Long non-coding RNA CCAT1 promotes gallbladder cancer development via negative modulation of miRNA-218-5p , 2015, Cell Death and Disease.

[23]  Martin Mueller,et al.  The H19/let-7 double-negative feedback loop contributes to glucose metabolism in muscle cells , 2014, Nucleic acids research.

[24]  Jin Meng,et al.  A four-long non-coding RNA signature in predicting breast cancer survival , 2014, Journal of experimental & clinical cancer research : CR.

[25]  Kosei Maemura,et al.  Molecular mechanism of cholangiocarcinoma carcinogenesis , 2014, Journal of hepato-biliary-pancreatic sciences.

[26]  Xu-ri Li,et al.  miR‐342‐3p suppresses proliferation, migration and invasion by targeting FOXM1 in human cervical cancer , 2014, FEBS letters.

[27]  Brian S. Cole,et al.  Stem-Loop Recognition by DDX17 Facilitates miRNA Processing and Antiviral Defense , 2014, Cell.

[28]  H. Taylor,et al.  Regulation of tumor cell migration and invasion by the H19/let-7 axis is antagonized by metformin-induced DNA methylation , 2014, Oncogene.

[29]  Qin Chen,et al.  lncRNA H19/miR‐675 axis represses prostate cancer metastasis by targeting TGFBI , 2014, The FEBS journal.

[30]  J. Tao,et al.  Down-regulation of FoxM1 inhibits viability and invasion of gallbladder carcinoma cells, partially dependent on inducement of cellular senescence. , 2014, World journal of gastroenterology.

[31]  A. Iafrate,et al.  Phase II study of gemcitabine, oxaliplatin in combination with panitumumab in KRAS wild-type unresectable or metastatic biliary tract and gallbladder cancer , 2014, British Journal of Cancer.

[32]  H. Weng,et al.  MALAT1 promotes the proliferation and metastasis of gallbladder cancer cells by activating the ERK/MAPK pathway , 2014, Cancer biology & therapy.

[33]  F. Camargo,et al.  Hippo Signaling Regulates Microprocessor and Links Cell-Density-Dependent miRNA Biogenesis to Cancer , 2014, Cell.

[34]  R. Medema,et al.  Sustained activation of SMAD3/SMAD4 by FOXM1 promotes TGF-β-dependent cancer metastasis. , 2014, The Journal of clinical investigation.

[35]  Howard Y. Chang,et al.  Long Noncoding RNAs: Cellular Address Codes in Development and Disease , 2013, Cell.

[36]  M. Gorospe,et al.  Long Noncoding RNA MALAT1 Controls Cell Cycle Progression by Regulating the Expression of Oncogenic Transcription Factor B-MYB , 2013, PLoS genetics.

[37]  Shuhan Sun,et al.  Epigenetic activation of the MiR-200 family contributes to H19-mediated metastasis suppression in hepatocellular carcinoma. , 2013, Carcinogenesis.

[38]  C. Fabián Flores-Jasso,et al.  Argonaute Divides Its RNA Guide into Domains with Distinct Functions and RNA-Binding Properties , 2012, Cell.

[39]  H. Hermeking,et al.  MicroRNAs in the p53 network: micromanagement of tumour suppression , 2012, Nature Reviews Cancer.

[40]  M. Kyba,et al.  The H19 lincRNA is a developmental reservoir of miR-675 which suppresses growth and Igf1r , 2012, Nature Cell Biology.

[41]  J. Decaprio,et al.  The MuvB complex sequentially recruits B-Myb and FoxM1 to promote mitotic gene expression. , 2012, Genes & development.

[42]  C. Tzeng,et al.  EGFR Nuclear Import in Gallbladder Carcinoma: Nuclear Phosphorylated EGFR Upregulates iNOS Expression and Confers Independent Prognostic Impact , 2012, Annals of Surgical Oncology.

[43]  P. Pandolfi,et al.  A ceRNA Hypothesis: The Rosetta Stone of a Hidden RNA Language? , 2011, Cell.

[44]  Jun Yu,et al.  Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. , 2010, Carcinogenesis.

[45]  A. Zhu,et al.  Current management of gallbladder carcinoma. , 2010, The oncologist.

[46]  M. Olschewski,et al.  EGFR and HER2 expression in advanced biliary tract cancer. , 2008, World journal of gastroenterology.

[47]  Hao Li,et al.  Plk1-dependent phosphorylation of FoxM1 regulates a transcriptional programme required for mitotic progression , 2008, Nature Cell Biology.

[48]  G. Neri,et al.  Different mechanisms cause imprinting defects at the IGF2/H19 locus in Beckwith-Wiedemann syndrome and Wilms' tumour. , 2008, Human molecular genetics.

[49]  A. G. de Herreros,et al.  A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. , 2008, Genes & development.

[50]  A. Gartel,et al.  FOXM1: The Achilles' heel of cancer? , 2008, Nature Reviews Cancer.

[51]  A. Feinberg,et al.  Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA , 2008, Nature.

[52]  S. Tilghman,et al.  Ectopic expression of the H19 gene in mice causes prenatal lethality. , 1991, Genes & development.

[53]  S. Tilghman,et al.  Locus unlinked to alpha-fetoprotein under the control of the murine raf and Rif genes. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Shouhua Wang,et al.  Upregulation of H19 indicates a poor prognosis in gallbladder carcinoma and promotes epithelial-mesenchymal transition. , 2016, American journal of cancer research.

[55]  H. Xia,et al.  Increased level of H19 long noncoding RNA promotes invasion, angiogenesis, and stemness of glioblastoma cells. , 2016, Journal of neurosurgery.

[56]  R. Kurokawa,et al.  Long Noncoding RNAs , 2015, Springer Japan.

[57]  Jun Yu,et al.  Oncofetal H 19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer , 2010 .

[58]  E. Lam,et al.  Targeting FOXM1 , 2008, Nature Reviews Cancer.