Vibration analysis of functionally graded carbon nanotube-reinforced composite shell structures

This article deals with the vibration analysis of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) shell structures. The material properties of an FG-CNTRC shell are graded smoothly through the thickness direction of the shell according to uniform distribution and some other functionally graded (FG) distributions (such as FG-X, FG-V, FG-O and FG-$${\Lambda}$$Λ) of the volume fraction of the carbon nanotube (CNT), and the effective material properties are estimated by employing the extended rule of mixture. An eight-noded shell element considering transverse shear effect according to Mindlin’s hypothesis has been employed for the finite element modelling and analysis of the composite shell structures. The formulation of the shell midsurface in an arbitrary curvilinear coordinate system based on the tensorial notation is also presented. The Rayleigh damping model has been implemented in order to study the effects of carbon nanotubes (CNTs) on the damping capacity of such shell structures. Different types of shell panels have been analyzed in order to study the impulse and frequency responses. The influences of CNT volume fraction, CNT distribution, geometry of the shell and material distributions on the dynamic behavior of FG-CNTRC shell structures have also been presented and discussed. Various types of FG-CNTRC shell structures (such as spherical, ellipsoidal, doubly curved and cylindrical) have been analyzed and discussed in order to compare studies in terms of settling time, first resonant frequency and absolute amplitude corresponding to first resonant frequency based on the impulse and frequency responses, and the effects of CNTs on vibration responses of such shell structures are also presented. The results show that the CNT distribution and volume fraction of CNT have a significant effect on vibration and damping characteristics of the structure.

[1]  P. Malekzadeh,et al.  Buckling analysis of quadrilateral laminated plates with carbon nanotubes reinforced composite layers , 2013 .

[2]  M. Koizumi THE CONCEPT OF FGM , 1993 .

[3]  E. Pan,et al.  Exact Solution for Functionally Graded Anisotropic Elastic Composite Laminates , 2003 .

[4]  K. Méténier,et al.  Elastic Modulus of Ordered and Disordered Multiwalled Carbon Nanotubes , 1999 .

[5]  Kshitij Gupta,et al.  Damping studies in fiber-reinforced composites : a review , 1999 .

[6]  Chih‐Ping Wu,et al.  The RMVT- and PVD-based finite layer methods for the three-dimensional analysis of multilayered composite and FGM plates , 2010 .

[7]  Y. Xiang,et al.  Vibration of carbon nanotube reinforced composite beams based on the first and third order beam theories , 2014 .

[8]  Pu Zhang,et al.  Interlaminar stress distribution of composite laminated plates with functionally graded fiber volume fraction , 2010 .

[9]  A. Milani,et al.  Size-dependent vibration behavior of functionally graded CNT-Reinforced polymer microcantilevers: Modeling and optimization , 2015 .

[10]  K. M. Liew,et al.  Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory , 2012 .

[11]  M. Abolbashari,et al.  General analytical solution for elastic radial wave propagation and dynamic analysis of functionally graded thick hollow cylinders subjected to impact loading , 2010 .

[12]  Yang Xiang,et al.  Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments , 2012 .

[13]  A. Alibeigloo Static analysis of functionally graded carbon nanotube-reinforced composite plate embedded in piezoelectric layers by using theory of elasticity , 2013 .

[14]  Tsu-Wei Chou,et al.  Multiscale modeling of compressive behavior of carbon nanotube/polymer composites , 2006 .

[15]  Tarapada Roy,et al.  Vibration and damping analysis of functionally graded carbon nanotubes reinforced hybrid composite shell structures , 2017 .

[16]  Local Collocation Method for Prediction of Natural Frequency of Functionally Graded Cylindrical Shells , 2015 .

[17]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[18]  X. Wang,et al.  Non-Linear Response of Functionally Graded Cylindrical Shells under Mechanical and Thermal Loads , 2011 .

[19]  Jang-Kyo Kim,et al.  Vibration damping characteristics of carbon fiber-reinforced composites containing multi-walled carbon nanotubes , 2011 .

[20]  Victor Birman,et al.  Modeling and Analysis of Functionally Graded Materials and Structures , 2007 .

[21]  Donald R Paul,et al.  Rheological behavior of multiwalled carbon nanotube/polycarbonate composites , 2002 .

[22]  Abdelouahed Tounsi,et al.  Static analysis of functionally graded short beams including warping and shear deformation effects , 2008 .

[23]  Huu-Tai Thai,et al.  A review of theories for the modeling and analysis of functionally graded plates and shells , 2015 .

[24]  Chenghua Sun,et al.  Axial Young’s modulus prediction of single-walled carbon nanotube arrays with diameters from nanometer to meter scales , 2005 .

[25]  Yufeng Xing,et al.  Analysis of composite plates using a layerwise theory and a differential quadrature finite element method , 2016 .

[26]  Reza Ansari,et al.  Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite Timoshenko beams , 2014 .

[27]  K. M. Liew,et al.  Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method , 2013 .

[28]  Zhu Su,et al.  A modified Fourier–Ritz approach for free vibration analysis of laminated functionally graded shallow shells with general boundary conditions , 2015 .

[29]  K. Liew,et al.  Non-linear dynamic stability of piezoelectric functionally graded carbon nanotube-reinforced composite plates with initial geometric imperfection , 2014 .

[30]  J. Reddy Analysis of functionally graded plates , 2000 .

[31]  N. Koratkar,et al.  Multifunctional structural reinforcement featuring carbon nanotube films , 2003 .

[32]  Toshio Mura,et al.  Micromechanics of defects in solids , 1982 .

[33]  M. R. Eslami,et al.  Effect of Imperfections on Thermal Buckling of Functionally Graded Cylindrical Shells , 2005 .

[34]  Mohammad Reza Eslami,et al.  Functionally Graded Cylindrical Shell Thermal Instability Based on Improved Donnell Equations , 2003 .

[35]  K. Liew,et al.  Free vibration analysis of functionally graded carbon nanotube-reinforced composite triangular plates using the FSDT and element-free IMLS-Ritz method , 2015 .

[36]  Sie Chin Tjong,et al.  Carbon Nanotube Reinforced Composites , 2009 .

[37]  R. Lin,et al.  Modeling of interfacial friction damping of carbon nanotube-based nanocomposites , 2010 .

[38]  A. Milani,et al.  Maximum natural frequencies of polymer composite micro-beams by optimum distribution of carbon nanotubes , 2011 .

[39]  G. G. Sheng,et al.  Thermal Vibration, Buckling and Dynamic Stability of Functionally Graded Cylindrical Shells Embedded in an Elastic Medium , 2008 .

[40]  M. Ray,et al.  Micromechanical analysis of fuzzy fiber reinforced composites , 2011 .

[41]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[42]  William D. Callister,et al.  Materials Science and Engineering: An Introduction , 1985 .

[43]  S. Suresh,et al.  Fundamentals of functionally graded materials , 1998 .

[44]  S. Meguid,et al.  Effect of carbon nanotube waviness on active damping of laminated hybrid composite shells , 2015 .

[45]  Werner J. Blau,et al.  Reinforcement of polymers with carbon nanotubes: The role of nanotube surface area , 2004 .

[46]  V. V. Bolotin,et al.  Dynamic Stability of Elastic Systems , 1965 .

[47]  Karl Schulte,et al.  Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites , 2005 .

[48]  T. Natsuki,et al.  Development of functionally graded vapor‐grown carbon‐fiber/polymer materials , 2013 .

[49]  Thomas R. Cundari,et al.  Thermal conduction analysis of layered functionally graded materials , 2012 .

[50]  K. M. Liew,et al.  Thermoelastic analysis of functionally graded carbon nanotube-reinforced composite plate using theory of elasticity , 2013 .

[51]  T. Chou,et al.  Advances in the science and technology of carbon nanotubes and their composites: a review , 2001 .

[52]  B. T. Kelly,et al.  Physics of Graphite , 1981 .

[53]  G. Odegard,et al.  Constitutive Modeling of Nanotube- Reinforced Polymer Composite Systems , 2001 .

[54]  M. R. Eslami,et al.  THERMAL BUCKLING OF FUNCTIONALLY GRADED PLATES BASED ON HIGHER ORDER THEORY , 2002 .

[55]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[56]  J. Reddy Mechanics of laminated composite plates and shells : theory and analysis , 1996 .

[57]  Gui-Rong Liu,et al.  A meshfree formulation of local radial point interpolation method (LRPIM) for incompressible flow simulation , 2003 .

[58]  A. Alibeigloo,et al.  Three-dimensional free vibration of carbon nanotube-reinforced composite plates with various boundary conditions using Ritz method , 2014 .

[59]  K. Liao,et al.  Interfacial characteristics of a carbon nanotube–polystyrene composite system , 2001 .

[60]  E. Pan,et al.  Molecular dynamics study of the stress–strain behavior of carbon-nanotube reinforced Epon 862 composites , 2007 .

[61]  M. Heshmati,et al.  Three-dimensional free vibration analysis of functionally graded nanocomposite cylindrical panels reinforced by carbon nanotube , 2013 .

[62]  Rasool Moradi-Dastjerdi,et al.  Vibration analysis of functionally graded nanocomposite cylinders reinforced by wavy carbon nanotube based on mesh-free method , 2014 .

[63]  M. R. Eslami,et al.  Buckling of Functionally Graded Plates under In-plane Compressive Loading , 2002 .

[64]  Hui-Shen Shen,et al.  Nonlinear vibration of nanotube-reinforced composite plates in thermal environments , 2011 .

[65]  K. M. Liew,et al.  Free vibration analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method in thermal environment , 2013 .

[66]  Hui-Shen Shen,et al.  Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates , 2010 .

[67]  R. Dendievel,et al.  Multiwalled carbon nanotube/polymer nanocomposites: Processing and properties , 2005 .

[68]  Arthur W. Leissa,et al.  Application of the Ritz method to plane elasticity problems for composite sheets with variable fibre spacing , 1989 .

[69]  T. P. D. Rajan,et al.  Design and fabrication of functionally graded in-situ aluminium composites for automotive pistons , 2015 .

[70]  M. C. Ray,et al.  Active control of geometrically nonlinear vibrations of doubly curved smart sandwich shells using 1–3 piezoelectric composites , 2013 .

[71]  Parviz Malekzadeh,et al.  Free vibration of quadrilateral laminated plates with carbon nanotube reinforced composite layers , 2014 .

[72]  Hui-Shen Shen,et al.  VIBRATION CHARACTERISTICS AND TRANSIENT RESPONSE OF SHEAR-DEFORMABLE FUNCTIONALLY GRADED PLATES IN THERMAL ENVIRONMENTS , 2002 .

[73]  B. Kieback,et al.  Processing techniques for functionally graded materials , 2003 .

[74]  C.M.C. Roque,et al.  Static analysis of functionally graded plates using third-order shear deformation theory and a meshless method , 2005 .

[75]  M. Ganapathi,et al.  Thermal postbuckling analysis of FGM skew plates , 2008 .

[76]  M. R. Isvandzibaei,et al.  Vibration analysis of supported thick-walled cylindrical shell made of functionally graded material under pressure loading , 2016 .

[77]  W. D. Heer,et al.  Electrostatic deflections and electromechanical resonances of carbon nanotubes , 1999, Science.

[78]  Tarun Kant,et al.  Higher order shear and normal deformation theory for natural frequency of functionally graded rectangular plates , 2012 .

[79]  Jie Yang,et al.  Thermal bifurcation buckling of piezoelectric carbon nanotube reinforced composite beams , 2013, Comput. Math. Appl..

[80]  Yaser Kiani,et al.  Thermoelastic free vibration and dynamic behaviour of an FGM doubly curved panel via the analytical hybrid Laplace–Fourier transformation , 2012 .

[81]  Renato Natal Jorge,et al.  Natural frequencies of functionally graded plates by a meshless method , 2006 .

[82]  Hui-Shen Shen,et al.  Thermal postbuckling behavior of shear deformable FGM plates with temperature-dependent properties , 2007 .

[83]  Hui‐Shen Shen Torsional postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments , 2014 .

[84]  M. Ganapathi,et al.  Thermal snapping of functionally graded materials plates , 2009 .

[85]  B. Aragh,et al.  Stress analysis of functionally graded open cylindrical shell reinforced by agglomerated carbon nanotubes , 2014 .

[86]  K. M. Liew,et al.  Postbuckling of carbon nanotube-reinforced functionally graded cylindrical panels under axial compression using a meshless approach , 2014 .

[87]  M. Ray,et al.  Smart damping of laminated fuzzy fiber reinforced composite shells using 1–3 piezoelectric composites , 2013 .

[88]  B. Ashrafi,et al.  Carbon nanotube-reinforced composites as structural materials for microactuators in microelectromechanical systems , 2006 .

[89]  Tarun Kant,et al.  A critical review of recent research on functionally graded plates , 2013 .

[90]  M. Şi̇mşek Bi-directional functionally graded materials (BDFGMs) for free and forced vibration of Timoshenko beams with various boundary conditions , 2015 .

[91]  Cv Clemens Verhoosel,et al.  Non-Linear Finite Element Analysis of Solids and Structures , 1991 .

[92]  Romesh C. Batra,et al.  Analysis of cylindrical bending thermoelastic deformations of functionally graded plates by a meshless local Petrov–Galerkin method , 2004 .

[93]  K. M. Liew,et al.  Static and dynamic of carbon nanotube reinforced functionally graded cylindrical panels , 2014 .

[94]  Bodo Fiedler,et al.  Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – A comparative study , 2005 .

[96]  J. N. Reddy,et al.  THERMOMECHANICAL ANALYSIS OF FUNCTIONALLY GRADED CYLINDERS AND PLATES , 1998 .

[97]  C. Wang,et al.  Axisymmetric bending of functionally graded circular and annular plates , 1999 .

[98]  B. Fox,et al.  Functionally graded carbon nanofiber/phenolic nanocomposites and their mechanical properties , 2013 .

[99]  L. S. Ong,et al.  Nonlinear free vibration behavior of functionally graded plates , 2006 .

[100]  H. Farnoush,et al.  Fabrication and characterization of functionally graded Al–SiC nanocomposite by using a novel multistep friction stir processing , 2014 .

[101]  Tongxi Yu,et al.  Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes , 2003 .

[102]  J. N. Reddy,et al.  Postbuckling analysis of functionally graded plates subject to compressive and thermal loads , 2010 .

[103]  Tianxi Liu,et al.  Morphology and Mechanical Properties of Multiwalled Carbon Nanotubes Reinforced Nylon-6 Composites , 2004 .

[104]  Hongjie Dai,et al.  Carbon nanotubes: opportunities and challenges , 2002 .

[105]  Sheng Qinghua The design and realization of data coupler in power and data mixed transmission technology based on coaxial cable , 2009 .

[106]  A. Ferreira,et al.  Geometrically Nonlinear Analysis of Functionally Graded Plates and Shells , 2009 .

[107]  Mei Lu,et al.  Thermal and mechanical properties of single-walled carbon nanotube bundle-reinforced epoxy nanocomposites : the role of solvent for nanotube dispersion , 2005 .

[108]  M. Ganapathi,et al.  Thermal buckling of simply supported functionally graded skew plates , 2006 .

[109]  Jie Yang,et al.  Dispersion spectrum in a functionally graded carbon nanotube-reinforced plate based on first-order shear deformation plate theory , 2013 .

[110]  Eric A. Grulke,et al.  MULTIWALLED CARBON NANOTUBE POLYMER COMPOSITES: SYNTHESIS AND CHARACTERIZATION OF THIN FILMS , 2002 .

[111]  Sarp Adali,et al.  Deflection and stress behaviour of nanocomposite reinforced beams using a multiscale analysis , 2005 .

[112]  M. Yas,et al.  THREE-DIMENSIONAL FREE VIBRATION OF FUNCTIONALLY GRADED FIBER ORIENTATION AND VOLUME FRACTION CYLINDRICAL PANELS , 2010 .

[113]  M. Najafizadeh,et al.  Free vibration analysis of two-dimensional functionally graded axisymmetric cylindrical shell on Winkler–Pasternak elastic foundation by First-order Shear Deformation Theory and using Navier-differential quadrature solution methods , 2015 .

[114]  K. Liew,et al.  Large deflection analysis of functionally graded carbon nanotube-reinforced composite plates by the element-free kp-Ritz method , 2013 .

[115]  Hui‐Shen Shen,et al.  Nonlinear vibration of nanotube-reinforced composite cylindrical panels resting on elastic foundations in thermal environments , 2014 .

[116]  Renato Natal Jorge,et al.  Analysis of Functionally Graded Plates by a Robust Meshless Method , 2007 .

[117]  S. Vel,et al.  Three-dimensional exact solution for the vibration of functionally graded rectangular plates , 2004 .

[118]  Linda S. Schadler,et al.  Characterizing energy dissipation in single-walled carbon nanotube polycarbonate composites , 2005 .

[119]  K. M. Liew,et al.  Large deflection geometrically nonlinear analysis of carbon nanotube-reinforced functionally graded cylindrical panels , 2014 .

[120]  Hui-Shen Shen,et al.  Nonlinear thermal bending response of FGM plates due to heat conduction , 2007 .

[121]  M. Koizumi FGM activities in Japan , 1997 .

[122]  S. Meguid,et al.  Multiscale modeling of carbon nanotube epoxy composites , 2015 .

[123]  R. Batra,et al.  Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov -Galerkin method , 2004 .

[124]  K. Liao,et al.  Physical interactions at carbon nanotube-polymer interface , 2003 .

[125]  B. Aragh,et al.  Eshelby–Mori–Tanaka approach for vibrational behavior of continuously graded carbon nanotube-reinforced cylindrical panels , 2012 .

[126]  S. Natarajan,et al.  Application of higher-order structural theory to bending and free vibration analysis of sandwich plates with CNT reinforced composite facesheets , 2014, 1403.1712.

[127]  D. Chakraborty,et al.  Improved shell finite element for piezothermoelastic analysis of smart fiber reinforced composite structures , 2010 .

[128]  Hui‐Shen Shen A comparison of buckling and postbuckling behavior of FGM plates with piezoelectric fiber reinforced composite actuators , 2009 .

[129]  H. Nguyen-Xuan,et al.  Isogeometric analysis of functionally graded carbon nanotube-reinforced composite plates using higher-order shear deformation theory , 2015 .

[130]  G. A. D. Briggs,et al.  Elastic and shear moduli of single-walled carbon nanotube ropes , 1999 .

[131]  Sritawat Kitipornchai,et al.  Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams , 2010 .

[132]  Y. Kiani,et al.  Free vibration of functionally graded carbon-nanotube-reinforced composite plates with cutout , 2016, Beilstein journal of nanotechnology.

[133]  Hui Zheng,et al.  Free vibration of four-parameter functionally graded spherical and parabolic shells of revolution with arbitrary boundary conditions , 2015 .

[134]  Elizabeth C. Dickey,et al.  Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites , 2000 .

[135]  N. Wattanasakulpong,et al.  Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation , 2013 .

[136]  G. Weng Effective bulk moduli of two functionally graded composites , 2003 .

[137]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[138]  Liangchi Zhang,et al.  Bending and local buckling of a nanocomposite beam reinforced by a single-walled carbon nanotube , 2006 .

[139]  A. Alibeigloo Free vibration analysis of functionally graded carbon nanotube-reinforced composite cylindrical panel embedded in piezoelectric layers by using theory of elasticity , 2014 .

[140]  Guirong Liu,et al.  A LOCAL RADIAL POINT INTERPOLATION METHOD (LRPIM) FOR FREE VIBRATION ANALYSES OF 2-D SOLIDS , 2001 .

[141]  Nicholas Fantuzzi,et al.  Generalized stress–strain recovery formulation applied to functionally graded spherical shells and panels under static loading , 2016 .

[142]  M. Heshmati,et al.  Dynamic analysis of functionally graded nanocomposite beams reinforced by randomly oriented carbon nanotube under the action of moving load , 2012 .

[143]  Huajian Gao,et al.  The Effect of Nanotube Waviness and Agglomeration on the Elastic Property of Carbon Nanotube-Reinforced Composites , 2004 .

[144]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[145]  P. Jeyaraj,et al.  Static Behavior of FG-CNT Polymer Nano Composite Plate under Elevated Non-uniform Temperature Fields , 2013 .

[146]  Jiun-Shyan Chen,et al.  A stabilized conforming nodal integration for Galerkin mesh-free methods , 2001 .

[147]  U. Sundararaj,et al.  Big returns from small fibers: A review of polymer/carbon nanotube composites , 2004 .

[148]  M. Ganapathi,et al.  Supersonic flutter characteristics of functionally graded flat panels including thermal effects , 2006 .

[149]  C. Y. Wang,et al.  A critical assessment of the elastic properties and effective wall thickness of single-walled carbon nanotubes , 2008, Nanotechnology.

[150]  K. M. Liew,et al.  Dynamic stability analysis of carbon nanotube-reinforced functionally graded cylindrical panels using the element-free kp-Ritz method , 2014 .

[151]  A. Milani,et al.  2D optimum distribution of carbon nanotubes to maximize fundamental natural frequency of polymer composite micro-beams , 2012 .

[152]  P. Qiao,et al.  Nonlinear low-velocity impact analysis of temperature-dependent nanotube-reinforced composite plates , 2014 .

[153]  James A. Elliott,et al.  MOLECULAR DYNAMICS SIMULATIONS OF THE ELASTIC PROPERTIES OF POLYMER/CARBON NANOTUBE COMPOSITES , 2007 .

[154]  C. Choe,et al.  Characterization of functionally gradient epoxy/carbon fibre composite prepared under centrifugal force , 1997 .

[155]  Akbar Alibeigloo,et al.  Exact solution for thermo-elastic response of functionally graded rectangular plates , 2010 .

[156]  Hui‐Shen Shen,et al.  Nonlinear analysis of nanotube-reinforced composite beams resting on elastic foundations in thermal environments , 2013 .

[157]  A. G. Arani,et al.  Buckling analysis of laminated composite rectangular plates reinforced by SWCNTs using analytical and finite element methods , 2011 .

[158]  Zhu Su,et al.  Three-dimensional vibration analysis of laminated functionally graded spherical shells with general boundary conditions , 2014 .

[159]  J. Coleman,et al.  Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites , 2002 .

[160]  Hongsheng Gao,et al.  Reinforcing mechanisms of single-walled carbon nanotube-reinforced polymer composites. , 2007, Journal of nanoscience and nanotechnology.

[161]  Nicholas Fantuzzi,et al.  Free vibrations of free-form doubly-curved shells made of functionally graded materials using higher-order equivalent single layer theories , 2014 .

[162]  Improved Finite Element Analysis of Multilayered, Doubly Curved Composite Shells , 2005 .

[163]  Zhu Su,et al.  Three-dimensional vibration analysis of thick functionally graded conical, cylindrical shell and annular plate structures with arbitrary elastic restraints , 2014 .

[164]  J. N. Reddy,et al.  Large deformation analysis of functionally graded shells , 2007 .

[165]  M. Yas,et al.  Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation , 2012 .

[166]  A. Alibeigloo,et al.  Static and free vibration analyses of carbon nanotube-reinforced composite plate using differential quadrature method , 2015 .

[167]  P. Ming,et al.  Static and free vibration analysis of functionally graded beams by combination Timoshenko theory and finite volume method , 2016 .

[168]  Y. Beni,et al.  A shear deformable conical shell formulation in the framework of couple stress theory , 2015 .

[169]  Y. Beni,et al.  Free vibration analysis of size-dependent shear deformable functionally graded cylindrical shell on the basis of modified couple stress theory , 2015 .

[170]  Jianping Lu,et al.  Elastic properties of single and multilayered nanotubes , 1997 .

[171]  Y. Benveniste,et al.  A new approach to the application of Mori-Tanaka's theory in composite materials , 1987 .

[172]  A. El-Zafrany,et al.  Buckling and vibration analysis of functionally graded composite structures using the finite element method , 2009 .

[173]  Hui-Shen Shen,et al.  Assessment of Voigt and Mori–Tanaka models for vibration analysis of functionally graded plates , 2012 .

[174]  M. Kumar,et al.  Design and analysis of a smart graded fiber-reinforced composite laminated plate , 2015 .

[175]  C. Friedrich,et al.  Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene , 2004 .

[176]  K. Hata,et al.  Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes , 2004, Science.

[177]  J. D. Eshelby,et al.  The elastic field outside an ellipsoidal inclusion , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[178]  Hui‐Shen Shen,et al.  Postbuckling of nanotube-reinforced composite cylindrical shells under combined axial and radial mechanical loads in thermal environment , 2013 .

[179]  K. M. Liew,et al.  Dynamic stability of laminated FGM plates based on higher-order shear deformation theory , 2003 .

[180]  M. Shaffer,et al.  Fabrication and Characterization of Carbon Nanotube/Poly(vinyl alcohol) Composites , 1999 .

[181]  Young-Wann Kim,et al.  TEMPERATURE DEPENDENT VIBRATION ANALYSIS OF FUNCTIONALLY GRADED RECTANGULAR PLATES , 2005 .

[182]  Y. Lipatov,et al.  Gradient interpenetrating polymer networks , 1995 .

[183]  Sritawat Kitipornchai,et al.  Geometrically nonlinear free vibration of shear deformable piezoelectric carbon nanotube/fiber/polymer multiscale laminated composite plates , 2014 .

[184]  Walter Lacarbonara,et al.  Vibrations of carbon nanotube-reinforced composites , 2010 .

[185]  Dimitris C. Lagoudas,et al.  Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites , 2006 .

[186]  K. Liew,et al.  Free Vibration Analysis of Functionally Graded Carbon Nanotube-Reinforced Composite Cylindrical Panels , 2013 .

[187]  S. Hosseini,et al.  Elastic wave propagation in a functionally graded nanocomposite reinforced by carbon nanotubes employing meshless local integral equations (LIEs) , 2013 .

[188]  Yoshimi Watanabe,et al.  Fabrication of copper/diamond functionally graded materials for grinding wheels by centrifugal sintered-casting , 2015 .

[189]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[190]  Xin-Lin Gao,et al.  A shear-lag model for carbon nanotube-reinforced polymer composites , 2005 .

[191]  Hui-Shen Shen,et al.  Nonlinear vibration and dynamic response of FGM plates with piezoelectric fiber reinforced composite actuators , 2009 .

[192]  A. Chakrabarti,et al.  Dynamic response of functionally graded skew shell panel , 2013 .

[193]  C. Shearwood,et al.  Mechanical properties and interfacial characteristics of carbon-nanotube-reinforced epoxy thin films , 2002 .

[194]  K. M. Liew,et al.  Buckling analysis of FG-CNT reinforced composite thick skew plates using an element-free approach , 2015 .

[195]  Tiangui Ye,et al.  Three-dimensional free vibration analysis of functionally graded annular sector plates with general boundary conditions , 2015 .

[196]  M. R. Eslami,et al.  THERMAL BUCKLING OF FUNCTIONALLY GRADED CYLINDRICAL SHELL , 2003 .

[197]  Hui-Shen Shen,et al.  Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, Part I: Axially-loaded shells , 2011 .

[198]  Hui‐Shen Shen,et al.  Postbuckling of sandwich plates with nanotube-reinforced composite face sheets resting on elastic foundations , 2012 .

[199]  K. M. Liew,et al.  Mechanical analysis of functionally graded carbon nanotube reinforced composites: A review , 2015 .

[200]  K. M. Liew,et al.  Vibration characteristic of moderately thick functionally graded carbon nanotube reinforced composite skew plates , 2015 .

[201]  Werner J. Blau,et al.  Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films , 2002 .

[202]  Hui-Shen Shen,et al.  Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments , 2009 .

[203]  M. Radosavljevic,et al.  Carbon nanotube composites for thermal management , 2002, cond-mat/0205418.

[204]  Romesh C. Batra,et al.  EXACT CORRESPONDENCE BETWEEN EIGENVALUES OF MEMBRANES AND FUNCTIONALLY GRADED SIMPLY SUPPORTED POLYGONAL PLATES , 2000 .

[205]  N. Jalili,et al.  Passive vibration damping enhancement using carbon nanotube-epoxy reinforced composites , 2005 .

[206]  Ted Belytschko,et al.  Numerical integration of the Galerkin weak form in meshfree methods , 1999 .

[207]  Namita Nanda,et al.  Geometrically Nonlinear Transient Response of Functionally Graded Shell Panels with Initial Geometric Imperfection , 2013 .

[208]  Hui-Shen Shen,et al.  Nonlinear vibration and bending of sandwich plates with nanotube-reinforced composite face sheets , 2012 .

[209]  M. S. de Vries,et al.  Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls , 1993, Nature.

[210]  Hui-Shen Shen,et al.  Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite cylindrical shells , 2012 .

[211]  Devis Bellucci,et al.  Functionally graded materials for orthopedic applications - an update on design and manufacturing. , 2016, Biotechnology advances.