Correspondence estimation in image pairs

This article provides an overview of current techniques for dense geometric correspondence estimation. We first formally define geometric correspondence and investigate the different types of image pairs. Then, we briefly look at the classic approaches to correspondence estimation, at their feasibility and flaws for simultaneous dense estimation. We focus on the Bayesian approach, which is very well suited for this task, and for which several promising algorithms have previously been developed.

[1]  Haibo Li,et al.  Hierarchical subsampling giving fractal regions , 2001, IEEE Trans. Image Process..

[2]  Jens-Rainer Ohm,et al.  A realtime hardware system for stereoscopic videoconferencing with viewpoint adaptation , 1998, Signal Process. Image Commun..

[3]  Nikolaos Grammalidis,et al.  Disparity and occlusion estimation in multiocular systems and their coding for the communication of multiview image sequences , 1998, IEEE Trans. Circuits Syst. Video Technol..

[4]  Aggelos K. Katsaggelos,et al.  Disparity estimation with modeling of occlusion and object orientation , 1998, Electronic Imaging.

[5]  Emanuele Trucco,et al.  Introductory techniques for 3-D computer vision , 1998 .

[6]  Reinhard Koch,et al.  Flexible acquisition of 3D structure from motion , 1998 .

[7]  Emile A. Hendriks,et al.  Synthesis of multi viewpoint images at non-intermediate positions , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[8]  Bernd Girod,et al.  Robust estimation of multi-component motion in image sequences using the epipolar constraint , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[9]  Christoph Stiller,et al.  Object-based estimation of dense motion fields , 1997, IEEE Trans. Image Process..

[10]  Aggelos K. Katsaggelos,et al.  Optical-flow estimation for multichannel video sequences , 1997, Electronic Imaging.

[11]  Georgios Tziritas,et al.  Construction of multiple views using jointly estimated motion and disparity fields , 1997, Electronic Imaging.

[12]  David G. Lowe,et al.  Rigidity Checking of 3D Point Correspondences Under Perspective Projection , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Emile A. Hendriks,et al.  Recursive disparity estimation algorithm for real time stereoscopic video applications , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[14]  R.E.H. Franich Disparity estimation in stereoscopic digital images , 1996 .

[15]  Ingemar J. Cox,et al.  A Maximum Likelihood Stereo Algorithm , 1996, Comput. Vis. Image Underst..

[16]  Tim J. Dennis,et al.  Epipolar line estimation and rectification for stereo image pairs , 1996, IEEE Trans. Image Process..

[17]  Antonio Ortega,et al.  Stereo image compression with disparity compensation using the MRF model , 1996, Other Conferences.

[18]  Daniele D. Giusto,et al.  Hierarchical block matching for disparity estimation in stereo sequences , 1995, Proceedings., International Conference on Image Processing.

[19]  Augusto Sarti,et al.  Synthesis of virtual views using non-Lambertian reflectivity models and stereo matching , 1995, Proceedings., International Conference on Image Processing.

[20]  Ingemar J. Cox,et al.  Dynamic histogram warping of image pairs for constant image brightness , 1995, Proceedings., International Conference on Image Processing.

[21]  Dimitris Anastassiou,et al.  A theoretical study on an accurate reconstruction of multiview images based on the Viterbi algorithm , 1995, Proceedings., International Conference on Image Processing.

[22]  Simultaneous recursive displacement estimation and restoration of noisy-blurred image sequences , 1995, IEEE Trans. Image Process..

[23]  A. Murat Tekalp,et al.  Digital Video Processing , 1995 .

[24]  Stan Z. Li,et al.  On Discontinuity-Adaptive Smoothness Priors in Computer Vision , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Alex Pentland,et al.  Recursive Estimation of Motion, Structure, and Focal Length , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Aggelos K. Katsaggelos,et al.  A recursive nonstationary MAP displacement vector field estimation algorithm , 1995, IEEE Trans. Image Process..

[27]  Takeo Kanade,et al.  A Stereo Matching Algorithm with an Adaptive Window: Theory and Experiment , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Aaron F. Bobick,et al.  Disparity-Space Images and Large Occlusion Stereo , 1994, ECCV.

[29]  A. Murat Tekalp,et al.  An algorithm for simultaneous motion estimation and scene segmentation , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[30]  O. Faugeras Three-dimensional computer vision: a geometric viewpoint , 1993 .

[31]  Patrick Bouthemy,et al.  Multimodal Estimation of Discontinuous Optical Flow using Markov Random Fields , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  W. Clem Karl,et al.  Multiscale representations of Markov random fields , 1993, IEEE Trans. Signal Process..

[33]  Jin Liu,et al.  Stereo and motion correspondence in a sequence of stereo images , 1993, Signal Process. Image Commun..

[34]  J. Zhang,et al.  The mean field theory for image motion estimation , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[35]  Paul R. Cohen,et al.  Camera Calibration with Distortion Models and Accuracy Evaluation , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  J. N. Driessen Motion estimation for digital video , 1992 .

[37]  Eric Dubois,et al.  Bayesian Estimation of Motion Vector Fields , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Charles W. Therrien,et al.  Discrete Random Signals and Statistical Signal Processing , 1992 .

[39]  M. A. Snyder On the Mathematical Foundations of Smoothness Constraints for the Determination of Optical Flow and for Surface Reconstruction , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  Petros Maragos Morphological correlation and mean absolute error criteria , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[41]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[42]  Wilfried Enkelmann,et al.  Investigations of multigrid algorithms for the estimation of optical flow fields in image sequences , 1988, Comput. Vis. Graph. Image Process..

[43]  M. Bertero,et al.  Ill-posed problems in early vision , 1988, Proc. IEEE.

[44]  D. Boekee,et al.  A pel-recursive Wiener-based displacement estimation algorithm , 1987 .

[45]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  Berthold K. P. Horn Robot vision , 1986, MIT electrical engineering and computer science series.

[47]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[48]  Hans-Hellmut Nagel,et al.  An Investigation of Smoothness Constraints for the Estimation of Displacement Vector Fields from Image Sequences , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[49]  Takeo Kanade,et al.  Stereo by Intra- and Inter-Scanline Search Using Dynamic Programming , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[50]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[51]  William B. Thompson,et al.  Disparity Analysis of Images , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.