Evaluation of TanDEM-X elevation data for geomorphological mapping and interpretation in high mountain environments — A case study from SE Tibet, China

Abstract Digital elevation models (DEMs) are a prerequisite for many different applications in the field of geomorphology. In this context, the two near-global medium resolution DEMs originating from the SRTM and ASTER missions are widely used. For detailed geomorphological studies, particularly in high mountain environments, these datasets are, however, known to have substantial disadvantages beyond their posting, i.e., data gaps and miscellaneous artifacts. The upcoming TanDEM-X DEM is a promising candidate to improve this situation by application of state-of-the-art radar technology, exhibiting a posting of 12 m and less proneness to errors. In this study, we present a DEM processed from a single TanDEM-X CoSSC scene, covering a study area in the extreme relief of the eastern Nyainqentanglha Range, southeastern Tibet. The potential of the resulting experimental TanDEM-X DEM for geomorphological applications was evaluated by geomorphometric analyses and an assessment of landform cognoscibility and artifacts in comparison to the ASTER GDEM and the recently released SRTM 1″ DEM. Detailed geomorphological mapping was conducted for four selected core study areas in a manual approach, based exclusively on the TanDEM-X DEM and its basic derivates. The results show that the self-processed TanDEM-X DEM yields a detailed and widely consistent landscape representation. It thus fosters geomorphological analysis by visual and quantitative means, allowing delineation of landforms down to footprints of ~ 30 m. Even in this premature state, the TanDEM-X elevation data are widely superior to the ASTER and SRTM datasets, primarily owing to its significantly higher resolution and its lower susceptibility to artifacts that hamper landform interpretation. Conversely, challenges toward interferometric DEM generation were identified, including (i) triangulation facets and missing topographic information resulting from radar layover on steep slopes facing toward the radar sensor, (ii) low coherence values on leeward slopes, (iii) decorrelation effects over water bodies, and (iv) challenges for phase unwrapping in settings of strong topographic contrasts. There is, however, a high probability that these drawbacks can be overcome by applying multiple interferograms exhibiting different perpendicular baselines as planned for the generation of the final TanDEM-X DEM product.

[1]  E. Rodríguez,et al.  A Global Assessment of the SRTM Performance , 2006 .

[2]  L. Owen,et al.  The role of the Indian summer monsoon and the mid-latitude westerlies in Himalayan glaciation: review and speculative discussion , 1998, Journal of the Geological Society.

[3]  F. Liang,et al.  The Holocene Indian monsoon variability over the southern Tibetan Plateau and its teleconnections , 2012 .

[4]  Richard J. Pike,et al.  The geometric signature: Quantifying landslide-terrain types from digital elevation models , 1988 .

[5]  Igor V. Florinsky,et al.  Accuracy of Local Topographic Variables Derived from Digital Elevation Models , 1998, Int. J. Geogr. Inf. Sci..

[6]  Colin Pain,et al.  Applications of remote sensing in geomorphology , 2009 .

[7]  M. Church,et al.  Numerical modelling of landscape evolution: geomorphological perspectives , 2004 .

[8]  J. Burg,et al.  Growth of the Namche Barwa Syntaxis and associated evolution of the Tsangpo Gorge: Constraints from structural and thermochronological data , 2008 .

[9]  Zama Eric Mashimbye,et al.  An evaluation of digital elevation models (DEMs) for delineating land components , 2014 .

[10]  Curtis W. Chen Statistical-cost network-flow approaches to two-dimensional phase unwrapping for radar interferometry , 2001 .

[11]  Peter F. Fisher,et al.  Causes and consequences of error in digital elevation models , 2006 .

[12]  J. P. Kimmins,et al.  The choice of window size in approximating topographic surfaces from Digital Elevation Models , 2004, Int. J. Geogr. Inf. Sci..

[13]  Olaf Bubenzer,et al.  Combining digital elevation data (SRTM/ASTER), high resolution satellite imagery (Quickbird) and GIS for geomorphological mapping: A multi-component case study on Mediterranean karst in Central Crete , 2009 .

[14]  D. Mickelson,et al.  Cosmogenic 10Be dating of Guxiang and Baiyu Glaciations , 2007 .

[15]  R. Armijo,et al.  Late Cenozoic right‐lateral strike‐slip faulting in southern Tibet , 1989 .

[16]  K. Nikolakopoulos,et al.  SRTM vs ASTER elevation products. Comparison for two regions in Crete, Greece , 2006 .

[17]  Charles Robert Ehlschlaeger The stochastic simulation approach : tools for representing spatial application uncertainty , 1998 .

[18]  Hannes Isaak Reuter,et al.  A first assessment of Aster GDEM tiles for absolute accuracy, relative accuracy and terrain parameters , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[19]  G. Robinson,et al.  THE ACCURACY OF DIGITAL ELEVATION MODELS DERIVED FROM DIGITISED CONTOUR DATA , 1994 .

[20]  Akira Iwasaki,et al.  Characteristics of ASTER GDEM version 2 , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[21]  Jochen Schmidt,et al.  Comparison of polynomial models for land surface curvature calculation , 2003, Int. J. Geogr. Inf. Sci..

[22]  Joseph. Wood,et al.  The geomorphological characterisation of Digital Elevation Models , 1996 .

[23]  Wenqing Tang,et al.  Surface uplift, tectonics, and erosion of eastern Tibet from large‐scale drainage patterns , 2004 .

[24]  Peng Li,et al.  Evaluation of ASTER GDEM using GPS benchmarks and SRTM in China , 2013 .

[25]  Haifeng Zhu,et al.  Little Ice Age glacier fluctuations reconstructed for the southeastern Tibetan Plateau using tree rings , 2013 .

[26]  Ross S. Purves,et al.  The influence of elevation uncertainty on derivation of topographic indices , 2009 .

[27]  D. Scherer,et al.  Precipitation seasonality and variability over the Tibetan plateau as resolved by the High Asia reanalysis , 2014 .

[28]  David Small,et al.  A comparison of phase to height conversion methods for SAR interferometry , 1996, IGARSS '96. 1996 International Geoscience and Remote Sensing Symposium.

[29]  C. Werner,et al.  Radar interferogram filtering for geophysical applications , 1998 .

[30]  Ashton Shortridge,et al.  Spatial structure and landscape associations of SRTM error , 2011 .

[31]  Guoqing Sun,et al.  Validation of surface height from shuttle radar topography mission using shuttle laser altimeter , 2003 .

[32]  F. Lehmkuhl,et al.  Toward a late Holocene glacial chronology for the eastern Nyainqêntanglha Range, southeastern Tibet , 2015 .

[33]  Yuji Sakuno,et al.  Evaluation of ASTER GDEM2 in Comparison with GDEM1, SRTM DEM and Topographic-Map-Derived DEM Using Inundation Area Analysis and RTK-dGPS Data , 2012, Remote. Sens..

[34]  G. Hancock,et al.  An evaluation of landscape evolution models to simulate decadal and centennial scale soil erosion in grassland catchments , 2011 .

[35]  Mike P. Stewart,et al.  A modification to the Goldstein radar interferogram filter , 2003, IEEE Trans. Geosci. Remote. Sens..

[36]  Jürgen Böhner,et al.  General climatic controls and topoclimatic variations in Central and High Asia , 2006 .

[37]  W. Featherstone,et al.  Comparison and validation of the recent freely available ASTER-GDEM ver1, SRTM ver4.1 and GEODATA DEM-9S ver3 digital elevation models over Australia , 2010 .

[38]  Frank Paul,et al.  An automatic method to create flow lines for determination of glacier length: A pilot study with Alaskan glaciers , 2013, Comput. Geosci..

[39]  Sean Oughton,et al.  Impact of Hall effect on energy decay in magnetohydrodynamic turbulence , 2003 .

[40]  I. Evans Statistical Characterization of Altitude Matrices by Computer. Report 6. An Integrated System of Terrain Analysis and Slope Mapping. , 1979 .

[41]  J. Dewey,et al.  The tectonic evolution of the Tibetan Plateau , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[42]  David A. Seal,et al.  The Shuttle Radar Topography Mission , 2007 .

[43]  E. Tohver,et al.  Significance of the Nova Brasilândia metasedimentary belt in western Brazil: Redefining the Mesoproterozoic boundary of the Amazon craton , 2004 .

[44]  Howard A. Zebker,et al.  Decorrelation in interferometric radar echoes , 1992, IEEE Trans. Geosci. Remote. Sens..

[45]  David J. Harding,et al.  SRTM C-band and ICESat Laser Altimetry Elevation Comparisons as a Function of Tree Cover and Relief , 2006 .

[46]  Predicting landscape-scale erosion rates using digital elevation models , 2003 .

[47]  O. Bubenzer,et al.  The use of new elevation data (SRTM/ASTER) for the detection and morphometric quantification of Pleistocene megadunes (draa) in the eastern Sahara and the southern Namib , 2008 .

[48]  William K. Pratt,et al.  Digital Image Processing: PIKS Inside , 2001 .

[49]  F. Lehmkuhl,et al.  Glaciers and equilibrium line altitudes of the eastern Nyainqêntanglha Range, SE Tibet , 2015 .

[50]  Helmut Rott,et al.  Advances in interferometric synthetic aperture radar (InSAR) in earth system science , 2009 .

[51]  Richard J. Pike,et al.  Geomorphometry -diversity in quantitative surface analysis , 2000 .

[52]  G. Miliaresis,et al.  An evaluation of the accuracy of the ASTER GDEM and the role of stack number: a case study of Nisiros Island, Greece , 2011 .

[53]  Carlos Henrique Grohmann,et al.  Multiscale Analysis of Topographic Surface Roughness in the Midland Valley, Scotland , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[54]  C. Thorne,et al.  Quantitative analysis of land surface topography , 1987 .

[55]  F. Lehmkuhl,et al.  High-resolution geomorphological map of a low mountain range near Aachen, Germany , 2013 .

[56]  J. Bryan Blair,et al.  Validation of SRTM Elevations Over Vegetated and Non-vegetated Terrain Using Medium-Footprint Lidar , 2006 .

[57]  John C. Curlander,et al.  Location of Spaceborne Sar Imagery , 1982, IEEE Transactions on Geoscience and Remote Sensing.

[58]  Xi Chen,et al.  Accuracy assessment of the ASTER GDEM and SRTM3 DEM: an example in the Loess Plateau and North China Plain of China , 2011 .

[59]  S. Wechsler Uncertainties associated with digital elevation models for hydrologic applications: a review , 2006 .

[60]  Stephen J. Ventura,et al.  Fuzzy and isodata classification of landform elements from digital terrain data in Pleasant Valley, Wisconsin , 1997 .

[61]  E. Möbius,et al.  Charge states of energetic (≈0.5 MeV/n) ions in corotating interaction regions at 1 AU and implications on source populations , 2002 .

[62]  P. Davy,et al.  The Namche Barwa syntaxis: evidence for exhumation related to compressional crustal folding , 1998 .

[63]  M. Ohsawa,et al.  Vertical vegetation zones along 30° N latitude in humid East Asia , 1996, Vegetatio.

[64]  Y. Kamarianakis,et al.  Validation of ASTER GDEM for the Area of Greece , 2011 .

[65]  Lothar Schrott,et al.  Geomorphometry in mountain terrain , 2004 .

[66]  Clive S. Fraser,et al.  Processing of Ikonos imagery for submetre 3D positioning and building extraction , 2002 .

[67]  Michael Eineder,et al.  TanDEM-X calibrated Raw DEM generation , 2012 .

[68]  Freek D. van der Meer,et al.  Impact of DEM source and resolution on topographic seismic amplification , 2011, Int. J. Appl. Earth Obs. Geoinformation.

[69]  Tarmo Lipping,et al.  Landscape development modeling based on statistical framework , 2014, Comput. Geosci..

[70]  Andrew Nelson,et al.  DEM production methods and sources , 2009 .

[71]  Dietrich Barsch,et al.  Geomorphological Mapping of High Mountain Relief, Federal Republic of Germany , 1987 .

[72]  R. J. Pike,et al.  Automated classifications of topography from DEMs by an unsupervised nested-means algorithm and a three-part geometric signature , 2007 .

[73]  Mike J. Smith,et al.  Methods for the visualization of digital elevation models for landform mapping , 2005 .

[74]  C. Petit,et al.  Techniques for quantifying the accuracy of gridded elevation models and for mapping uncertainty in digital terrain analysis , 2011 .

[75]  G. Krieger,et al.  TanDEM-X: mission concept and performance analysis , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[76]  Michael F. Goodchild,et al.  Modeling the Uncertainty of Slope and Aspect Estimates Derived from Spatial Databases , 2010 .

[77]  M. Macklin,et al.  High‐resolution interpretative geomorphological mapping of river valley environments using airborne LiDAR data , 2007 .

[78]  G. Hancock,et al.  A comparison of SRTM and high‐resolution digital elevation models and their use in catchment geomorphology and hydrology: Australian examples , 2006 .

[79]  Lucy Bastin,et al.  A fuzzy c-means classification of elevation derivatives to extract the morphometric classification of landforms in Snowdonia, Wales , 2007, Comput. Geosci..

[80]  Sabu Joseph,et al.  Sensitivity of digital elevation models: The scenario from two tropical mountain river basins of the Western Ghats, India , 2014 .

[81]  A. Bräuning,et al.  Late Holocene monsoonal temperate glacier fluctuations on the Tibetan Plateau , 2008 .

[82]  Ángel M. Felicísimo,et al.  Parametric statistical method for error detection in digital elevation models , 1994 .

[83]  R. Bamler,et al.  Synthetic aperture radar interferometry , 1998 .

[84]  John A. Richards,et al.  Remote Sensing with Imaging Radar , 2009 .

[85]  R. D. Garg,et al.  Evaluation of vertical accuracy of open source Digital Elevation Model (DEM) , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[86]  James Rose,et al.  Geomorphological mapping of glacial landforms from remotely sensed data : An evaluation of the principal data sources and an assessment of their quality , 2006 .

[87]  T. Yao,et al.  Evaluation of ASTER GDEM and SRTM and their suitability in hydraulic modelling of a glacial lake outburst flood in southeast Tibet , 2012 .

[88]  Xiaoye Liu,et al.  Airborne LiDAR for DEM generation: some critical issues , 2008 .

[89]  Shangzhe Zhou,et al.  Chapter 70 – Quaternary Glaciations: Extent and Chronology in China , 2011 .

[90]  M. Abrams The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data products for the high spatial resolution imager on NASA's Terra platform , 2000 .

[91]  José Darrozes,et al.  The Black Top Hat function applied to a DEM: A tool to estimate recent incision in a mountainous watershed (Estibère Watershed, Central Pyrenees) , 2002 .

[92]  B. Xia,et al.  Late Mesozoic tectonic evolution and growth of the Tibetan plateau prior to the Indo-Asian collision , 2012 .

[93]  Yuri Gorokhovich,et al.  Accuracy assessment of the processed SRTM-based elevation data by CGIAR using field data from USA and Thailand and its relation to the terrain characteristics , 2006 .

[94]  M. Schwabisch,et al.  A fast and efficient technique for SAR interferogram geocoding , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[95]  Andrea Giachetti,et al.  Matching techniques to compute image motion , 2000, Image Vis. Comput..

[96]  Hannes Isaak Reuter,et al.  An evaluation of void‐filling interpolation methods for SRTM data , 2007, Int. J. Geogr. Inf. Sci..

[97]  P. A. Shary,et al.  Fundamental quantitative methods of land surface analysis , 2002 .

[98]  F. Lehmkuhl,et al.  Reconstructing glacier retreat since the Little Ice Age in SE Tibet by glacier mapping and equilibrium line altitude calculation , 2014 .

[99]  J. Morel,et al.  Landscape evolution models: A review of their fundamental equations , 2014 .

[100]  R. Haining,et al.  Geography, Spatial Data Analysis, and Geostatistics: An Overview. 地理学、空间数据分析及地统计学:综述 , 2010 .

[101]  Juha Oksanen,et al.  DIGITAL ELEVATION MODEL ERROR IN TERRAIN ANALYSIS , 2006 .

[102]  A. Roth,et al.  The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar , 2003 .

[103]  W. Boos,et al.  Orographic controls on climate and paleoclimate of Asia: thermal and mechanical roles for the Tibetan Plateau. , 2010 .

[104]  Pierre Briole,et al.  SRTM 3″ DEM (versions 1, 2, 3, 4) validation by means of extensive kinematic GPS measurements: a case study from North Greece , 2010 .

[105]  U. C. Kothyari,et al.  A GIS based distributed rainfall–runoff model , 2004 .

[106]  Ian G. Cumming,et al.  Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation , 2005 .

[107]  Gerhard Krieger,et al.  TanDEM-X: A Satellite Formation for High-Resolution SAR Interferometry , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[108]  C. Werner,et al.  Satellite radar interferometry: Two-dimensional phase unwrapping , 1988 .

[109]  David T. Sandwell,et al.  Accuracy and resolution of shuttle radar topography mission data , 2003 .

[110]  U. Schickhoff The Upper Timberline in the Himalayas, Hindu Kush and Karakorum: a Review of Geographical and Ecological Aspects , 2005 .

[111]  P. Williams,et al.  Digital Terrain Models and the Visualization of Structural Geology , 1996 .

[112]  László Fodor,et al.  Discrimination of fluvial, eolian and neotectonic features in a low hilly landscape: A DEM-based morphotectonic analysis in the Central Pannonian Basin, Hungary , 2009 .

[113]  Clemens Eisank,et al.  Automated object-based classification of topography from SRTM data , 2012, Geomorphology.

[114]  Xianfang Sun,et al.  Despeckling SRTM and other topographic data with a denoising algorithm , 2010 .

[115]  Xun Shi,et al.  A comparison of LiDAR-based DEMs and USGS-sourced DEMs in terrain analysis for knowledge-based digital soil mapping , 2012 .

[116]  Birgit Wessel,et al.  TanDEM-X Ground Segment – DEM Products Specification Document , 2013 .

[117]  J. Guinan,et al.  Multiscale Terrain Analysis of Multibeam Bathymetry Data for Habitat Mapping on the Continental Slope , 2007 .

[118]  Yasushi Yamaguchi,et al.  Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) , 1998, IEEE Trans. Geosci. Remote. Sens..

[119]  Michael J de Smith,et al.  Geospatial Analysis: A Comprehensive Guide to Principles, Techniques and Software Tools , 2007 .

[120]  D. Montgomery,et al.  Glacier and landslide feedbacks to topographic relief in the Himalayan syntaxes , 2010, Proceedings of the National Academy of Sciences.

[121]  J. M. Sappington,et al.  Quantifying Landscape Ruggedness for Animal Habitat Analysis: A Case Study Using Bighorn Sheep in the Mojave Desert , 2007 .

[122]  G. Kroenung,et al.  The SRTM Data Finishing Process and Products , 2006 .

[123]  Jochen Schmidt,et al.  Fuzzy land element classification from DTMs based on geometry and terrain position , 2004 .

[124]  I. Moore,et al.  Digital terrain modelling: A review of hydrological, geomorphological, and biological applications , 1991 .

[125]  Hiroyuki Fujisada,et al.  ASTER DEM performance , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[126]  Jo Wood,et al.  Spectral filtering as a method of visualising and removing striped artefacts in digital elevation data , 2008 .

[127]  Mike J. Smith,et al.  Problems of bias in mapping linear landforms from satellite imagery , 2007, Int. J. Appl. Earth Obs. Geoinformation.

[128]  Igor V. Florinsky,et al.  Digital Terrain Analysis in Soil Science and Geology , 2011 .

[129]  Frank Paul,et al.  On the suitability of the SRTM DEM and ASTER GDEM for the compilation of topographic parameters in glacier inventories , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[130]  Howard A. Zebker,et al.  Two-dimensional phase unwrapping with statistical models for nonlinear optimization , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[131]  Steve Dowding,et al.  VOID FILL OF SRTM ELEVATION DATA - PRINCIPLES, PROCESSES AND PERFORMANCE , 2002 .

[132]  E. Liang,et al.  Tree-ring evidence of recent abnormal warming on the southeast Tibetan Plateau , 2009 .

[133]  W. Xiaoli,et al.  Glacial advances in southeastern Tibet during late Quaternary and their implications for climatic changes , 2010 .

[134]  Stanley R Sternberg,et al.  Grayscale morphology , 1986 .

[135]  Tomislav Hengl,et al.  Chapter 4 Preparation of DEMs for Geomorphometric Analysis , 2009 .

[136]  Rudi Goossens,et al.  Mapping volcano topography with remote sensing: ASTER vs. SRTM , 2008 .

[137]  Laurence C. Smith,et al.  Emerging Applications of Interferometric Synthetic Aperture Radar (InSAR) in Geomorphology and Hydrology , 2002 .

[138]  J. Serra Introduction to mathematical morphology , 1986 .

[139]  J. Garlick,et al.  Near-global validation of the SRTM DEM using satellite radar altimetry , 2007 .

[140]  Florian Steininger,et al.  From point to area: Upscaling approaches for Late Quaternary archaeological and environmental data , 2014 .

[141]  Mark W. Smith Roughness in the Earth Sciences , 2014 .

[142]  Clemens Eisank,et al.  Object representations at multiple scales from digital elevation models , 2011, Geomorphology.