Typical l1-recovery limit of sparse vectors represented by concatenations of random orthogonal matrices

We consider the problem of recovering an N-dimensional sparse vector x from its linear transformation y = Dx of M (<N) dimensions. Minimization of the l(1)-norm of x under the constraint y = Dx ...

[1]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[2]  A. Atkinson Subset Selection in Regression , 1992 .

[3]  Florent Krzakala,et al.  Probabilistic reconstruction in compressed sensing: algorithms, phase diagrams, and threshold achieving matrices , 2012, ArXiv.

[4]  Xiaoming Huo,et al.  Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.

[5]  Sundeep Rangan,et al.  A sparsity detection framework for on-off random access channels , 2009, 2009 IEEE International Symposium on Information Theory.

[6]  Koujin Takeda,et al.  Analysis of CDMA systems that are characterized by eigenvalue spectrum , 2006, ArXiv.

[7]  Gaël Richard,et al.  Union of MDCT Bases for Audio Coding , 2008, IEEE Transactions on Audio, Speech, and Language Processing.

[8]  Michael Elad,et al.  A generalized uncertainty principle and sparse representation in pairs of bases , 2002, IEEE Trans. Inf. Theory.

[9]  Michael Elad,et al.  Sparse and Redundant Representations - From Theory to Applications in Signal and Image Processing , 2010 .

[10]  C. Itzykson,et al.  The planar approximation. II , 1980 .

[11]  Y. Kabashima,et al.  Perceptron capacity revisited: classification ability for correlated patterns , 2007, 0712.4050.

[12]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[14]  D S Dean,et al.  Role of the interaction matrix in mean-field spin glass models. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  D. Thouless,et al.  Stability of the Sherrington-Kirkpatrick solution of a spin glass model , 1978 .

[16]  Florent Krzakala,et al.  Statistical physics-based reconstruction in compressed sensing , 2011, ArXiv.

[17]  Rémi Gribonval,et al.  Sparse Representations in Audio and Music: From Coding to Source Separation , 2010, Proceedings of the IEEE.

[18]  Robert D. Nowak,et al.  Compressed Channel Sensing: A New Approach to Estimating Sparse Multipath Channels , 2010, Proceedings of the IEEE.

[19]  G. Parisi,et al.  Replica field theory for deterministic models: II. A non-random spin glass with glassy behaviour , 1994, cond-mat/9406074.

[20]  D. Stein Introduction to the Replica Theory of Disordered Statistical Systems , 2002 .

[21]  Michael Elad,et al.  Dictionaries for Sparse Representation Modeling , 2010, Proceedings of the IEEE.

[22]  Tim Palmer,et al.  Singular vectors, predictability and ensemble forecasting for weather and climate , 2013 .

[23]  Allen Y. Yang,et al.  Distributed Sensor Perception via Sparse Representation , 2010, Proceedings of the IEEE.

[24]  Yoshiyuki Kabashima,et al.  Inference from correlated patterns: a unified theory for perceptron learning and linear vector channels , 2007, ArXiv.

[25]  James H. Martin,et al.  Speech and language processing: an introduction to natural language processing, computational linguistics, and speech recognition, 2nd Edition , 2000, Prentice Hall series in artificial intelligence.