Dengue transmission: mathematical model with discrete time delays and estimation of the reproduction number

ABSTRACT In this paper, we establish a mathematical model with two delays to reflect the intrinsic and extrinsic incubation periods of virus in dengue transmission. The basic reproduction number of the model is defined. It is proved that the disease-free equilibrium is stable when and the positive equilibrium is stable when . Next, we derive an estimation formula for the reproduction number when the human population is partially susceptible to dengue. As an application, the values of dengue transmission in Singapore in the years 2013–2015 are estimated. Our estimation method can be applied to estimating of other infectious diseases, especially when the human population is not completely susceptible to the disease.

[1]  Ying-Hen Hsieh,et al.  Intervention measures, turning point, and reproduction number for dengue, Singapore, 2005. , 2009, The American journal of tropical medicine and hygiene.

[2]  O. Diekmann Mathematical Epidemiology of Infectious Diseases , 1996 .

[3]  E Massad,et al.  Estimation of R0 from the initial phase of an outbreak of a vector‐borne infection , 2009, Tropical medicine & international health : TM & IH.

[4]  K. Dietz The estimation of the basic reproduction number for infectious diseases , 1993, Statistical methods in medical research.

[5]  Winston Garira,et al.  Modelling Immune Response and Drug Therapy in Human Malaria Infection , 2008 .

[6]  Eduardo Massad,et al.  The risk of chikungunya fever in a dengue-endemic area. , 2008, Journal of travel medicine.

[7]  Shigui Ruan,et al.  On the Delayed Ross–Macdonald Model for Malaria Transmission , 2008, Bulletin of mathematical biology.

[8]  T. Luck,et al.  Attitudes of the German General Population toward Early Diagnosis of Dementia – Results of a Representative Telephone Survey , 2012, PloS one.

[9]  D. Focks,et al.  A simulation model of the epidemiology of urban dengue fever: literature analysis, model development, preliminary validation, and samples of simulation results. , 1995, The American journal of tropical medicine and hygiene.

[10]  Abdon Atangana,et al.  Computational Analysis of the Model Describing HIV Infection of CD4+T Cells , 2014, BioMed research international.

[11]  Michael A. Johansson,et al.  The Incubation Periods of Dengue Viruses , 2012, PloS one.

[12]  Xiaohua Ding,et al.  Dynamic consistent non-standard numerical scheme for a dengue disease transmission model , 2014 .

[13]  N. Hens,et al.  Dynamic Epidemiological Models for Dengue Transmission: A Systematic Review of Structural Approaches , 2012, PLoS ONE.

[14]  Abhishek Pandey,et al.  Comparing vector-host and SIR models for dengue transmission. , 2013, Mathematical biosciences.

[15]  Abdon Atangana,et al.  Model of Break-Bone Fever via Beta-Derivatives , 2014, BioMed research international.

[16]  C. Connell McCluskey Global stability for an SIR epidemic model with delay and nonlinear incidence , 2010 .

[17]  Niel Hens,et al.  A simple periodic-forced model for dengue fitted to incidence data in Singapore. , 2013, Mathematical biosciences.

[18]  J. Hyman,et al.  Estimation of the reproduction number of dengue fever from spatial epidemic data. , 2007, Mathematical biosciences.

[19]  E. Massad,et al.  The basic reproduction number for dengue fever in São Paulo state, Brazil: 1990-1991 epidemic. , 1994, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[20]  S. Halstead,et al.  Dengue , 1872, The Lancet.

[21]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[22]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[23]  David L. Smith,et al.  Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings , 2013, Parasites & Vectors.

[24]  L. Allen,et al.  The basic reproduction number in epidemic models with periodic demographics , 2009, Journal of biological dynamics.

[25]  C. Favier,et al.  Early determination of the reproductive number for vector‐borne diseases: the case of dengue in Brazil , 2006, Tropical medicine & international health : TM & IH.

[26]  Pejman Rohani,et al.  Appropriate Models for the Management of Infectious Diseases , 2005, PLoS medicine.

[27]  Xuezhi Li,et al.  Analysis of a Dengue Disease Model with Nonlinear Incidence , 2013 .

[28]  Abdon Atangana,et al.  On the Mathematical Analysis of Ebola Hemorrhagic Fever: Deathly Infection Disease in West African Countries , 2014, BioMed research international.

[29]  Hui Wan,et al.  A Malaria Model with Two Delays , 2013 .

[30]  E Massad,et al.  Modelling the control strategies against dengue in Singapore , 2007, Epidemiology and Infection.

[31]  L. Esteva,et al.  Analysis of a dengue disease transmission model. , 1998, Mathematical biosciences.

[32]  Jianjun Bai,et al.  New delay-dependent robust stability criteria for uncertain neutral systems with mixed delays , 2014, J. Frankl. Inst..

[33]  Xiao-Qiang Zhao,et al.  A Malaria Transmission Model with Temperature-Dependent Incubation Period , 2017, Bulletin of mathematical biology.

[34]  O. Diekmann,et al.  On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations , 1990, Journal of mathematical biology.

[35]  J.A.P. Heesterbeek A Brief History of R0 and a Recipe for its Calculation , 2002, Acta biotheoretica.

[36]  P. Alam ‘L’ , 2021, Composites Engineering: An A–Z Guide.

[37]  Zhichao Jiang,et al.  An Epidemic Model for Tick-Borne Disease with Two Delays , 2013, J. Appl. Math..

[38]  J. Watmough,et al.  Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. , 2002, Mathematical biosciences.

[39]  C. Dolea,et al.  World Health Organization , 1949, International Organization.

[40]  E Massad,et al.  The risk of yellow fever in a dengue-infested area. , 2001, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[41]  M. Teixeira,et al.  Modelling the dynamics of dengue real epidemics , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[42]  Xiaohua Ding,et al.  Global Stability of Multigroup Dengue Disease Transmission Model , 2012, J. Appl. Math..

[43]  Huaixing Li,et al.  Global stability of a delayed SIRS computer virus propagation model , 2014, Int. J. Comput. Math..

[44]  L. Wahl,et al.  Perspectives on the basic reproductive ratio , 2005, Journal of The Royal Society Interface.

[45]  Kevin R. Long,et al.  A dengue model with a dynamic Aedes albopictus vector population , 2010 .

[46]  Jian Zu,et al.  Global dynamics of multi‐group dengue disease model with latency distributions , 2015 .

[47]  Xinyu Song,et al.  DYNAMICS OF A NON-AUTONOMOUS HIV-1 INFECTION MODEL WITH DELAYS , 2013 .

[48]  C E Smith,et al.  Factors in the transmission of virus infections from animals to man. , 1964, The Scientific basis of medicine annual reviews.

[49]  Abdon Atangana,et al.  Approximate Solution of Tuberculosis Disease Population Dynamics Model , 2013 .

[50]  R. May,et al.  Infectious Diseases of Humans: Dynamics and Control , 1991, Annals of Internal Medicine.

[51]  G. P. Samanta,et al.  Permanence and extinction of a nonautonomous HIV/AIDS epidemic model with distributed time delay , 2011 .

[52]  M. Woolhouse,et al.  Reconstructing historical changes in the force of infection of dengue fever in Singapore: implications for surveillance and control. , 2008, Bulletin of the World Health Organization.

[53]  C. P. Farrington,et al.  Estimation of the basic reproduction number for infectious diseases from age‐stratified serological survey data , 2001 .

[54]  Xiao-Qiang Zhao,et al.  Basic Reproduction Ratios for Periodic Compartmental Models with Time Delay , 2017 .

[55]  Mohammed Derouich,et al.  Dengue fever: Mathematical modelling and computer simulation , 2006, Appl. Math. Comput..

[56]  Herbert W. Hethcote,et al.  The Mathematics of Infectious Diseases , 2000, SIAM Rev..

[57]  D. Gubler,et al.  Dengue and dengue haemorrhagic fever , 1998, The Lancet.

[58]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[59]  Rui Xu,et al.  Global stability of a SIR epidemic model with nonlinear incidence rate and time delay , 2009 .

[60]  E. Massad,et al.  Dynamics of the 2006/2007 dengue outbreak in Brazil. , 2008, Memorias do Instituto Oswaldo Cruz.