A Mode-Hopping MCMC sampler
暂无分享,去创建一个
[1] A. Voter. A Monte Carlo method for determining free‐energy differences and transition state theory rate constants , 1985 .
[2] R. Fletcher. Practical Methods of Optimization , 1988 .
[3] A. Kennedy,et al. Hybrid Monte Carlo , 1988 .
[4] G. Parisi,et al. Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.
[5] N. Gordon,et al. Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .
[6] W. C. Still,et al. A Smart Monte Carlo Technique for Free Energy Simulations of Multiconformational Molecules. Direct Calculations of the Conformational Populations of Organic Molecules , 1995 .
[7] Radford M. Neal. Sampling from multimodal distributions using tempered transitions , 1996, Stat. Comput..
[8] G. Roberts,et al. Adaptive Markov Chain Monte Carlo through Regeneration , 1998 .
[9] Mark A. Miller,et al. Efficient free energy calculations by variationally optimized metric scaling: Concepts and applications to the volume dependence of cluster free energies and to solid–solid phase transitions , 2000 .
[10] David J. Fleet,et al. Stochastic Tracking of 3D Human Figures Using 2D Image Motion , 2000, ECCV.
[11] Andrew Blake,et al. Articulated body motion capture by annealed particle filtering , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).
[12] Cristian Sminchisescu,et al. Covariance scaled sampling for monocular 3D body tracking , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.
[13] Radford M. Neal. Annealed importance sampling , 1998, Stat. Comput..
[14] H. Tjelmeland,et al. Mode Jumping Proposals in MCMC , 2001 .
[15] G. Warnes. The Normal Kernel Coupler: An Adaptive Markov Chain Monte Carlo Method for Efficiently Sampling From Multi-Modal Distributions , 2001 .
[16] A. Voter,et al. Smart Darting Monte Carlo , 2001 .
[17] David J. Fleet,et al. People tracking using hybrid Monte Carlo filtering , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.
[18] Cristian Sminchisescu,et al. Hyperdynamics Importance Sampling , 2002, ECCV.
[19] Cristian Sminchisescu,et al. Building Roadmaps of Local Minima of Visual Models , 2002, ECCV.
[20] Michael J. Black,et al. Implicit Probabilistic Models of Human Motion for Synthesis and Tracking , 2002, ECCV.
[21] C. Jarzynski. Targeted free energy perturbation. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.
[22] Geoffrey E. Hinton. Training Products of Experts by Minimizing Contrastive Divergence , 2002, Neural Computation.
[23] Cristian Sminchisescu,et al. Estimation algorithms for ambiguous visual models : Three Dimensional Human Modeling and Motion Reconstruction in Monocular Video Sequences. (Algorithmes d'estimation pour des modèles visuels ambigus : Modélisation Humaine Tridimensionnelle et Reconstruction du Mouvement dans des Séquences Vidéo Mon , 2002 .
[24] Cristian Sminchisescu,et al. Kinematic jump processes for monocular 3D human tracking , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..
[25] Geoffrey E. Hinton,et al. Wormholes Improve Contrastive Divergence , 2003, NIPS.
[26] Michael Isard,et al. CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.