The Parameterized Complexity of Some Geometric Problems in Unbounded Dimension

We study the parameterized complexity of the following fundamental geometric problems with respect to the dimension d: i) Given n points in ? d , compute their minimum enclosing cylinder. ii) Given two n-point sets in ? d , decide whether they can be separated by two hyperplanes. iii) Given a system of n linear inequalities with d variables, find a maximum size feasible subsystem. We show that (the decision versions of) all these problems are W[1]-hard when parameterized by the dimension d. Our reductions also give a n ?(d)-time lower bound (under the Exponential Time Hypothesis).

[1]  Timothy M. Chan A (slightly) faster algorithm for klee's measure problem , 2008, SCG '08.

[2]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[3]  Boris Aronov,et al.  On approximating the depth and related problems , 2005, SODA '05.

[4]  Srinivasan Venkatesh,et al.  Approximating the Radii of Point Sets , 2007, SIAM J. Comput..

[5]  Sue Whitesides,et al.  Parameterized Complexity of Geometric Problems , 2008, Comput. J..

[6]  Nimrod Megiddo,et al.  On the complexity of polyhedral separability , 1988, Discret. Comput. Geom..

[7]  Pat Morin,et al.  Output-sensitive algorithms for Tukey depth and related problems , 2008, Stat. Comput..

[8]  Pat Morin,et al.  Covering Things with Things , 2002, ESA.

[9]  Piotr Indyk,et al.  Approximate clustering via core-sets , 2002, STOC '02.

[10]  Nimrod Megiddo On the Complexity of Some Geometric Problems in Unbounded Dimension , 1990, J. Symb. Comput..

[11]  Jacques Stern,et al.  The hardness of approximate optima in lattices, codes, and systems of linear equations , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[12]  Russell Impagliazzo,et al.  On the Complexity of k-SAT , 2001, J. Comput. Syst. Sci..

[13]  Günter Rote,et al.  Geometric clustering: fixed-parameter tractability and lower bounds with respect to the dimension , 2008, SODA '08.

[14]  Edoardo Amaldi,et al.  The Complexity and Approximability of Finding Maximum Feasible Subsystems of Linear Relations , 1995, Theor. Comput. Sci..