Solution-phase Synthesis of Stannite-type Ag2ZnSnS4 Nanoparticles for Application to Photoelectrode Materials

Ag2ZnSnS4 (AZTS) nanoparticles were successfully synthesized at relatively low temperature via thermal reaction of corresponding metal acetates and a sulfur source in a hot oleylamine solution, the...

[1]  E. Aydil,et al.  Size control and quantum confinement in Cu2ZnSnS4 nanocrystals. , 2011, Chemical communications.

[2]  Yadong Li,et al.  Wurtzite Cu2ZnSnS4 nanocrystals: a novel quaternary semiconductor. , 2011, Chemical communications.

[3]  A. Walsh,et al.  Wurtzite-derived polytypes of kesterite and stannite quaternary chalcogenide semiconductors , 2010 .

[4]  B. Parkinson,et al.  Multiple Exciton Collection in a Sensitized Photovoltaic System , 2010, Science.

[5]  S. Kuwabata,et al.  Preparation and photoelectrochemical properties of densely immobilized Cu2ZnSnS4 nanoparticle films , 2010 .

[6]  Illan J. Kramer,et al.  Depleted-heterojunction colloidal quantum dot solar cells. , 2010, ACS nano.

[7]  J. Bisquert,et al.  Design of injection and recombination in quantum dot sensitized solar cells. , 2010, Journal of the American Chemical Society.

[8]  A. Kudo,et al.  Novel Stannite-type Complex Sulfide Photocatalysts AI2-Zn-AIV-S4 (AI = Cu and Ag; AIV = Sn and Ge) for Hydrogen Evolution under Visible-Light Irradiation , 2010 .

[9]  Vahid Akhavan,et al.  Synthesis of Cu(2)ZnSnS(4) nanocrystals for use in low-cost photovoltaics. , 2009, Journal of the American Chemical Society.

[10]  B. Parkinson,et al.  Solution-based synthesis and characterization of Cu2ZnSnS4 nanocrystals. , 2009, Journal of the American Chemical Society.

[11]  H. Hillhouse,et al.  Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells. , 2009, Journal of the American Chemical Society.

[12]  V. Bulović,et al.  Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum. , 2009, Nano letters.

[13]  K. Domen,et al.  CdS Nanoparticles Exhibiting Quantum Size Effect by Dispersion on TiO2: Photocatalytic H2 Evolution and Photoelectrochemical Measurements , 2009 .

[14]  T. Akita,et al.  Au nanoparticle electrocatalysis in a photoelectrochemical solar cell using CdS quantum dot-sensitized TiO2 photoelectrodes. , 2009, Chemical communications.

[15]  Matt Law,et al.  Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol. , 2008, ACS nano.

[16]  T. Pellegrino,et al.  Synthesis and biological assay of GSH functionalized fluorescent quantum dots for staining Hydra vulgaris. , 2007, Bioconjugate chemistry.

[17]  P. Kamat Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion , 2007 .

[18]  Michio Matsumura,et al.  Lowering of operational voltage of organic electroluminescent devices by coating indium-tin-oxide electrodes with a thin CuOx layer , 2002 .

[19]  S. Nie,et al.  Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules , 2001, Nature Biotechnology.

[20]  J. Matthew Mauro,et al.  Self-Assembly of CdSe−ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein , 2000 .

[21]  B. Ohtani,et al.  Fabrication and Characterization of CdS-Nanoparticle Mono- and Multilayers on a Self-Assembled Monolayer of Alkanedithiols on Gold , 1998 .

[22]  A. Alivisatos,et al.  Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer , 1994, Nature.

[23]  Y. Nosaka Finite depth spherical well model for excited states of ultrasmall semiconductor particles: an application , 1991 .