Target identification and validation in drug discovery: the role of proteomics.

[1]  Terrence P. Kenakin,et al.  A Pharmacologic Analysis of Drug-Receptor Interaction , 1987 .

[2]  M. Wilkins,et al.  Progress with gene‐product mapping of the Mollicutes: Mycoplasma genitalium , 1995, Electrophoresis.

[3]  G. Heijne,et al.  Genome‐wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms , 1998, Protein science : a publication of the Protein Society.

[4]  N. Cairns,et al.  Increased levels of 14-3-3 gamma and epsilon proteins in brain of patients with Alzheimer's disease and Down syndrome. , 1999, Journal of neural transmission. Supplementum.

[5]  S. Grant,et al.  Proteomic analysis of NMDA receptor–adhesion protein signaling complexes , 2000, Nature Neuroscience.

[6]  J. Garin,et al.  Organic solvent extraction as a versatile procedure to identify hydrophobic chloroplast membrane proteins , 2000, Electrophoresis.

[7]  S. Weinberger,et al.  Recent advancements in surface‐enhanced laser desorption/ionization‐time of flight‐mass spectrometry , 2000, Electrophoresis.

[8]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[9]  David F. Horrobin,et al.  Realism in drug discovery—could Cassandra be right? , 2001, Nature Biotechnology.

[10]  R. Schwartz,et al.  Whole proteome pI values correlate with subcellular localizations of proteins for organisms within the three domains of life. , 2001, Genome research.

[11]  J M Gauthier,et al.  Protein--protein interaction maps: a lead towards cellular functions. , 2001, Trends in genetics : TIG.

[12]  M. Dierssen,et al.  Proteomic analysis of the fetal brain , 2002, Proteomics.

[13]  E. Petricoin,et al.  Clinical proteomics: translating benchside promise into bedside reality , 2002, Nature Reviews Drug Discovery.

[14]  A. Hopkins,et al.  The druggable genome , 2002, Nature Reviews Drug Discovery.

[15]  Robert S Hauptschein,et al.  Global high-throughput screens for cellular function. , 2002, Experimental hematology.

[16]  Kai Stühler,et al.  Genetic analysis of the mouse brain proteome , 2002, Nature Genetics.

[17]  D. Pisetsky,et al.  DNA microarrays: boundless technology or bound by technology? Guidelines for studies using microarray technology. , 2002, Arthritis and rheumatism.

[18]  R. Henningsen,et al.  Application of zwitterionic detergents to the solubilization of integral membrane proteins for two‐dimensional gel electrophoresis and mass spectrometry , 2002, Proteomics.

[19]  J. Drews Stategic trends in the drug industry. , 2003, Drug discovery today.

[20]  Richard D. Smith,et al.  Affinity labeling of highly hydrophobic integral membrane proteins for proteome-wide analysis. , 2003, Journal of proteome research.

[21]  Philippe Marin,et al.  The ‘magic tail’ of G protein‐coupled receptors: an anchorage for functional protein networks , 2003, FEBS letters.

[22]  F. Collins,et al.  A vision for the future of genomics research , 2003, Nature.

[23]  S. Patterson Data analysis—the Achilles heel of proteomics , 2003, Nature Biotechnology.

[24]  Laszlo Prokai,et al.  Proteomic analysis of the synaptic plasma membrane fraction isolated from rat forebrain. , 2003, Brain research. Molecular brain research.

[25]  Clinical Applications of Proteomics , 2003 .

[26]  Matthew Bogyo,et al.  Chemical proteomics and its application to drug discovery. , 2003, Current opinion in biotechnology.

[27]  David F. Horrobin,et al.  Modern biomedical research: an internally self-consistent universe with little contact with medical reality? , 2003, Nature Reviews Drug Discovery.

[28]  G. Lubec,et al.  Evidence for existence of thirty hypothetical proteins in rat brain , 2004, Proteome Science.

[29]  G. Duyk Attrition and Translation , 2003, Science.

[30]  A. Sands,et al.  Knockouts model the 100 best-selling drugs—will they model the next 100? , 2003, Nature Reviews Drug Discovery.

[31]  M. Cotten,et al.  An efficient proteomics method to identify the cellular targets of protein kinase inhibitors , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[32]  L. Huber Is proteomics heading in the wrong direction? , 2003, Nature Reviews Molecular Cell Biology.

[33]  J. Yates,et al.  The application of mass spectrometry to membrane proteomics , 2003, Nature Biotechnology.

[34]  Yoshiya Oda,et al.  Quantitative chemical proteomics for identifying candidate drug targets. , 2003, Analytical chemistry.

[35]  George M. Milne,et al.  Chapter 35. Pharmaceutical productivity — the imperative for new paradigms , 2003 .

[36]  Richard D. Smith,et al.  Proteome analysis by mass spectrometry. , 2003, Annual review of biophysics and biomolecular structure.

[37]  E. Kunkel Systems biology in drug discovery , 2004, Nature Biotechnology.

[38]  Michael Williams A return to the fundamentals of drug discovery? , 2004, Current opinion in investigational drugs.

[39]  Dalia Cohen,et al.  Functional genomics to new drug targets , 2004, Nature Reviews Drug Discovery.

[40]  Michael Cascio,et al.  Neuroproteomics: Expression Profiling of the Brain's Proteomes in Health and Disease , 2004, Neurochemical Research.

[41]  D. Bridges,et al.  14-3-3 Proteins: A Number of Functions for a Numbered Protein , 2004, Science's STKE.

[42]  C. Southan Has the yo‐yo stopped? An assessment of human protein‐coding gene number , 2004, Proteomics.

[43]  Emanuel F Petricoin,et al.  Lessons from Kitty Hawk: From feasibility to routine clinical use for the field of proteomic pattern diagnostics , 2004, Proteomics.

[44]  Lani F. Wu,et al.  Multidimensional Drug Profiling By Automated Microscopy , 2004, Science.

[45]  R. Horton AIDS: The Elusive Vaccine , 2004 .

[46]  S. Grant,et al.  Proteomics in postgenomic neuroscience: the end of the beginning , 2004, Nature Neuroscience.

[47]  Michael E Phelps,et al.  Systems Biology and New Technologies Enable Predictive and Preventative Medicine , 2004, Science.

[48]  S. Haggarty,et al.  Finding new components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips. , 2004, Proceedings of the National Academy of Sciences of the United States of America.