A Fast MEANSHIFT Algorithm-Based Target Tracking System

Tracking moving targets in complex scenes using an active video camera is a challenging task. Tracking accuracy and efficiency are two key yet generally incompatible aspects of a Target Tracking System (TTS). A compromise scheme will be studied in this paper. A fast mean-shift-based Target Tracking scheme is designed and realized, which is robust to partial occlusion and changes in object appearance. The physical simulation shows that the image signal processing speed is >50 frame/s.

[1]  Anton van den Hengel,et al.  Fast global kernel density mode seeking with application to localization and tracking , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[2]  Huiyu Zhou,et al.  Object tracking using SIFT features and mean shift , 2009, Comput. Vis. Image Underst..

[3]  Andrea Sanna,et al.  Improving Robustness of Infrared Target Tracking Algorithms Based on Template Matching , 2011, IEEE Transactions on Aerospace and Electronic Systems.

[4]  Beno Benhabib,et al.  An Active Vision System for Multitarget Surveillance in Dynamic Environments , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[5]  Ingemar J. Cox,et al.  An Efficient Implementation of Reid's Multiple Hypothesis Tracking Algorithm and Its Evaluation for the Purpose of Visual Tracking , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[7]  Michael I. Jordan,et al.  On Convergence Properties of the EM Algorithm for Gaussian Mixtures , 1996, Neural Computation.

[8]  Moteaal Asadi Shirzi,et al.  Active tracking using Intelligent Fuzzy Controller and kernel-based algorithm , 2011, 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011).

[9]  Takashi Uchiyama,et al.  Design and implementation of high-speed visual tracking system for real-time motion analysis , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[10]  Ioannis Pitas,et al.  Optimal Approach for Fast Object-Template Matching , 2007, IEEE Transactions on Image Processing.

[11]  Ren C. Luo,et al.  Autonomous mobile target tracking system based on grey-fuzzy control algorithm , 2000, IEEE Trans. Ind. Electron..

[12]  Young Hoon Joo,et al.  Fast and robust algorithm of tracking multiple moving objects for intelligent video surveillance systems , 2011, IEEE Transactions on Consumer Electronics.

[13]  Jon Louis Bentley,et al.  Multidimensional Binary Search Trees in Database Applications , 1979, IEEE Transactions on Software Engineering.

[14]  Chen Wei-gang Simultaneous object tracking and pedestrian detection using HOGs on contour , 2010, IEEE 10th INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS.

[15]  Yanxi Liu,et al.  Online selection of discriminative tracking features , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Michael J. Black,et al.  EigenTracking: Robust Matching and Tracking of Articulated Objects Using a View-Based Representation , 1996, International Journal of Computer Vision.

[17]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Andrea Cavallaro,et al.  Target Detection and Tracking With Heterogeneous Sensors , 2008, IEEE Journal of Selected Topics in Signal Processing.

[19]  Guy Le Besnerais,et al.  System Development and Flight Experiment of Vision-Based Simultaneous Navigation and Tracking , 2010 .

[20]  Leslie Pack Kaelbling,et al.  Accelerating EM: An Empirical Study , 1999, UAI.

[21]  Anup Basu,et al.  Motion Tracking with an Active Camera , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Michael Isard,et al.  Object localization by Bayesian correlation , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[23]  Jian Sun,et al.  A Novel Multi-Aperture Based Sun Sensor Based on a Fast Multi-Point MEANSHIFT (FMMS) Algorithm , 2011, Sensors.

[24]  Ruslan Salakhutdinov,et al.  Adaptive Overrelaxed Bound Optimization Methods , 2003, ICML.

[25]  Stephen E. Levinson,et al.  Object tracking using incremental Fisher discriminant analysis , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[26]  Junshan Li,et al.  Mean Shift Based Target Tracking in FLIR Imagery via Adaptive Prediction of Initial Searching Points , 2008, 2008 Second International Symposium on Intelligent Information Technology Application.

[27]  Jesús Martínez del Rincón,et al.  An efficient particle filter for color-based tracking in complex scenes , 2007, 2007 IEEE Conference on Advanced Video and Signal Based Surveillance.

[28]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Honghai Liu,et al.  Target tracking for mobile robot platforms via object matching and background anti-matching , 2010, Robotics Auton. Syst..

[30]  Ahmad Ali,et al.  Automatic visual tracking and firing system for anti aircraft machine gun , 2009, 6th International Bhurban Conference on Applied Sciences & Technology.

[31]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Michael Lindenbaum,et al.  Sequential Karhunen-Loeve basis extraction and its application to images , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[33]  Shinichiro Omachi,et al.  Fast Template Matching With Polynomials , 2007, IEEE Transactions on Image Processing.