Proteomics Shows New Faces for the Old Penicillin Producer Penicillium chrysogenum

Fungi comprise a vast group of microorganisms including the Ascomycota (majority of all described fungi), the Basidiomycota (mushrooms or higher fungi), and the Zygomycota and Chytridiomycota (basal or lower fungi) that produce industrially interesting secondary metabolites, such as β-lactam antibiotics. These compounds are one of the most commonly prescribed drugs world-wide. Since Fleming's initial discovery of Penicillium notatum 80 years ago, the role of Penicillium as an antimicrobial source became patent. After the isolation of Penicillium chrysogenum NRRL 1951 six decades ago, classical mutagenesis and screening programs led to the development of industrial strains with increased productivity (at least three orders of magnitude). The new “omics” era has provided the key to understand the underlying mechanisms of the industrial strain improvement process. The review of different proteomics methods applied to P. chrysogenum has revealed that industrial modification of this microorganism was a consequence of a careful rebalancing of several metabolic pathways. In addition, the secretome analysis of P. chrysogenum has opened the door to new industrial applications for this versatile filamentous fungus.

[1]  J. Heijnen,et al.  A metabolome study of the steady-state relation between central metabolism, amino acid biosynthesis and penicillin production in Penicillium chrysogenum. , 2008, Metabolic engineering.

[2]  C. Barreiro,et al.  Cytoplasmic- and extracellular-proteome analysis of Diplodia seriata: a phytopathogenic fungus involved in grapevine decline , 2010, Proteome Science.

[3]  W. K. Anslow,et al.  Studies in the biochemistry of micro-organisms , 1933 .

[4]  S. Colowick,et al.  Methods in Enzymology , Vol , 1966 .

[5]  A. Demain,et al.  Antibiotics: Containing the Beta-Lactam Structure , 1983 .

[6]  J. Barredo,et al.  Why did the Fleming strain fail in penicillin industry? , 2005, Fungal genetics and biology : FG & B.

[7]  S. Kaminogawa,et al.  Purification and properties of aminopeptidase I from Penicillium caseicolum , 1988 .

[8]  J. Pronk,et al.  Engineering of Penicillium chrysogenum for fermentative production of a novel carbamoylated cephem antibiotic precursor. , 2009, Metabolic engineering.

[9]  You-Liang Peng,et al.  Advances in fungal proteomics. , 2007, Microbiological research.

[10]  Carlos García-Estrada,et al.  Transcriptional and bioinformatic analysis of the 56.8 kb DNA region amplified in tandem repeats containing the penicillin gene cluster in Penicillium chrysogenum. , 2006, Fungal genetics and biology : FG & B.

[11]  Carlos Gancedo,et al.  Moonlighting Proteins in Yeasts , 2008, Microbiology and Molecular Biology Reviews.

[12]  Y. Sakai,et al.  Peroxisomes as dynamic organelles: autophagic degradation , 2010, The FEBS journal.

[13]  H. Raistrick,et al.  Studies in the biochemistry of micro-organisms: The formation from glucose by members of the Penicillium chrysogenum series of a pigment, an alkali-soluble protein and penicillin-the antibacterial substance of Fleming. , 1932, The Biochemical journal.

[14]  Jaeyoung Choi,et al.  Fungal Secretome Database: Integrated platform for annotation of fungal secretomes , 2010, BMC Genomics.

[15]  M. Raftery,et al.  Plant‐extract‐induced changes in the proteome of the soil‐borne pathogenic fungus Thielaviopsis basicola , 2010, Proteomics.

[16]  E. S. C. Weiner,et al.  The compact Oxford English dictionary , 1991 .

[17]  M. Berg Functional characterisation of penicillin production strains , 2010 .

[18]  Jan A. K. W. Kiel,et al.  Peroxisomes Are Required for Efficient Penicillin Biosynthesis in Penicillium chrysogenum , 2010, Applied and Environmental Microbiology.

[19]  Marten Veenhuis,et al.  Overproduction of a single protein, Pc-Pex11p, results in 2-fold enhanced penicillin production by Penicillium chrysogenum. , 2005, Fungal genetics and biology : FG & B.

[20]  T. Doering,et al.  Eukaryotic UDP-Galactopyranose Mutase (GLF Gene) in Microbial and Metazoal Pathogens , 2005, Eukaryotic Cell.

[21]  C. A. van den Hondel,et al.  Cloning of the nitrate-nitrite reductase gene cluster of Penicillium chrysogenum and use of the niaD gene as a homologous selection marker. , 1991, Journal of biotechnology.

[22]  W. Nickel Unconventional Secretory Routes: Direct Protein Export Across the Plasma Membrane of Mammalian Cells , 2005, Traffic.

[23]  P. Skudder,et al.  [39] Continuous treatment of ultrahigh-temperature sterilized milk using immobilized sulfhydryl oxidase☆ , 1987 .

[24]  Kevin J Woollard,et al.  A proteomic analysis of C-reactive protein stimulated THP-1 monocytes , 2011, Proteome Science.

[25]  J. Martín,et al.  The penicillin gene cluster is amplified in tandem repeats linked by conserved hexanucleotide sequences. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[26]  K. Kato Occurrence of penicillin-nucleus in culture broths. , 1953, Journal of antibiotics (Tokyo. 1968).

[27]  M. Peñalva,et al.  Fungal metabolic model for human type I hereditary tyrosinaemia. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[28]  J. A. Roubos,et al.  Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88 , 2007, Nature Biotechnology.

[29]  G. Turner,et al.  The optimization of penicillin biosynthesis in fungi. , 1998, Trends in biotechnology.

[30]  G. Rolinson,et al.  Synthesis of Penicillin: 6-Aminopenicillanic Acid in Penicillin Fermentations , 1959, Nature.

[31]  A. Verkleij,et al.  Involvement of microbodies in penicillin biosynthesis. , 1992, Biochimica et biophysica acta.

[32]  D. Tsaur Current Opinion in INFECTIOUS DISEASES , 1993 .

[33]  I. J. van der Klei,et al.  Reprogramming Hansenula polymorpha for penicillin production: expression of the Penicillium chrysogenum pcl gene. , 2007, FEMS yeast research.

[34]  J. Palmer,et al.  Secondary metabolism in fungi: does chromosomal location matter? , 2010, Current opinion in microbiology.

[35]  A. Verkleij,et al.  Localization of the pathway of the penicillin biosynthesis in Penicillium chrysogenum. , 1991, The EMBO journal.

[36]  Daniel Schwarzott,et al.  A new fungal phylum, the Glomeromycota: phylogeny and evolution * * Dedicated to Manfred Kluge (Tech , 2001 .

[37]  C. Méndez,et al.  Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering. , 2008, Metabolic engineering.

[38]  J. Martín,et al.  Deacetylcephalosporin C production in Penicillium chrysogenum by expression of the isopenicillin N epimerization, ring expansion, and acetylation genes. , 2007, Chemistry & biology.

[39]  C. García-Estrada,et al.  Evolution of fungal β-lactam biosynthesis gene clusters , 2011 .

[40]  Carlos García-Estrada,et al.  The global regulator LaeA controls penicillin biosynthesis, pigmentation and sporulation, but not roquefortine C synthesis in Penicillium chrysogenum. , 2009, Biochimie.

[41]  Xiang Jia Min,et al.  FunSecKB: the Fungal Secretome KnowledgeBase , 2011, Database J. Biol. Databases Curation.

[42]  M. Peñalva,et al.  Disruption of phacA, an Aspergillus nidulans Gene Encoding a Novel Cytochrome P450 Monooxygenase Catalyzing Phenylacetate 2-Hydroxylation, Results in Penicillin Overproduction* , 1999, The Journal of Biological Chemistry.

[43]  Maria R. Davis,et al.  Comparative proteomic analysis of Botrytis cinerea secretome. , 2009, Journal of proteome research.

[44]  David L. Hawksworth,et al.  The fungal dimension of biodiversity: magnitude, significance, and conservation , 1991 .

[45]  Rytas Vilgalys,et al.  Fungal Community Analysis by Large-Scale Sequencing of Environmental Samples , 2005, Applied and Environmental Microbiology.

[46]  P. Kirk,et al.  Recent developments in the taxonomic affiliation and phylogenetic positioning of fungi: impact in applied microbiology and environmental biotechnology , 2011, Applied Microbiology and Biotechnology.

[47]  H. Zorn,et al.  Fungal secretomes—nature’s toolbox for white biotechnology , 2008, Applied Microbiology and Biotechnology.

[48]  J. Barredo,et al.  Reduced Function of a Phenylacetate-Oxidizing Cytochrome P450 Caused Strong Genetic Improvement in Early Phylogeny of Penicillin-Producing Strains , 2001, Journal of bacteriology.

[49]  Andriy Kovalchuk,et al.  Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum , 2008, Nature Biotechnology.

[50]  Arnold L. Demain,et al.  The β-lactam antibiotics: past, present, and future , 2004, Antonie van Leeuwenhoek.

[51]  K. Raper THE DEVELOPMENT OF IMPROVED PENICILLIN‐PRODUCING MOLDS , 1946 .

[52]  R. Elander Strain Improvement and Preservation of β -Lactam-Producing Microorganisms , 1983 .

[53]  V. Menon,et al.  Ferulic Acid: Therapeutic Potential Through Its Antioxidant Property , 2007, Journal of clinical biochemistry and nutrition.

[54]  J. García,et al.  The Homogentisate Pathway: a Central Catabolic Pathway Involved in the Degradation of l-Phenylalanine, l-Tyrosine, and 3-Hydroxyphenylacetate in Pseudomonas putida , 2004, Journal of bacteriology.

[55]  S. Jonjić,et al.  Modulation of natural killer cell activity by viruses. , 2010, Current opinion in microbiology.

[56]  K. Mathee,et al.  Beta‐lactam antibiotics: from antibiosis to resistance and bacteriology , 2010, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[57]  E. Calvo,et al.  Two‐dimensional electrophoresis protein profile of the phytopathogenic fungus Botrytis cinerea , 2006, Proteomics.

[58]  Pier Giorgio Righetti,et al.  Blue silver: A very sensitive colloidal Coomassie G‐250 staining for proteome analysis , 2004, Electrophoresis.

[59]  M. J. Johnson,et al.  Penicillin yields from new mold strains. , 1946, Journal of the American Chemical Society.

[60]  Ardiansyah,et al.  Occurrence, properties, and applications of feruloyl esterases , 2009, Applied Microbiology and Biotechnology.

[61]  C. García-Estrada,et al.  In vivo transport of the intermediates of the penicillin biosynthetic pathway in tailored strains of Penicillium chrysogenum , 2007, Applied Microbiology and Biotechnology.

[62]  Paul M Kirk,et al.  Fungal ecology catches fire. , 2009, The New phytologist.

[63]  Michael Weiss,et al.  A higher-level phylogenetic classification of the Fungi. , 2007, Mycological research.

[64]  Birgit Hoff,et al.  Two Components of a velvet-Like Complex Control Hyphal Morphogenesis, Conidiophore Development, and Penicillin Biosynthesis in Penicillium chrysogenum , 2010, Eukaryotic Cell.

[65]  A. Zeng,et al.  Open Access RESEARCH , 2010 .

[66]  J. Kormanec,et al.  Core promoters of the penicillin biosynthesis genes and quantitative RT-PCR analysis of these genes in high and low production strain of Penicillium chrysogenum , 2010, Folia Microbiologica.

[67]  Constance Jeffery,et al.  Moonlighting proteins , 2010, Genome Biology.

[68]  B. Poolman,et al.  Matching the proteome to the genome: the microbody of penicillin-producing Penicillium chrysogenum cells , 2009, Functional & Integrative Genomics.

[69]  J. Guarro,et al.  Developments in Fungal Taxonomy , 1999, Clinical Microbiology Reviews.

[70]  A. Fleming,et al.  Classics in infectious diseases: on the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae by Alexander Fleming, Reprinted from the British Journal of Experimental Pathology 10:226-236, 1929. , 1980, Reviews of infectious diseases.

[71]  J. Stauffer,et al.  The Production and Selection of a Family of Strains in Penicillium Chrysogenum , 1955 .

[72]  W. Nickel The mystery of nonclassical protein secretion. A current view on cargo proteins and potential export routes. , 2003, European journal of biochemistry.

[73]  A. Demain The mechanism of penicillin biosynthesis. , 1959, Advances in applied microbiology.

[74]  Carlos García-Estrada,et al.  Post-translational enzyme modification by the phosphopantetheinyl transferase is required for lysine and penicillin biosynthesis but not for roquefortine or fatty acid formation in Penicillium chrysogenum. , 2008, The Biochemical journal.

[75]  J. Ohnishi,et al.  Efficient 40°C fermentation of l-lysine by a new Corynebacterium glutamicum mutant developed by genome breeding , 2003, Applied Microbiology and Biotechnology.

[76]  D. Prusky,et al.  Involvement of Gluconic Acid and Glucose Oxidase in the Pathogenicity of Penicillium expansum in Apples. , 2007, Phytopathology.

[77]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[78]  A. Tauch,et al.  Heat Shock Proteome Analysis of Wild-Type Corynebacterium glutamicum ATCC 13032 and a Spontaneous Mutant Lacking GroEL 1 , a Dispensable Chaperone , 2005 .

[79]  David J. Smith,et al.  Amplification of the isopenicillin N synthetase gene in a strain of Penicillium chrysogenum producing high levels of penicillin , 1989, Molecular and General Genetics MGG.

[80]  C. Gancedo,et al.  Unraveling moonlighting functions with yeasts , 2011, IUBMB life.

[81]  W. H. Peterson,et al.  Penicillin Production by Pigment-Free Molds , 1953 .

[82]  J. Fernández-Cañón,et al.  Novel phacB-Encoded Cytochrome P450 Monooxygenase from Aspergillus nidulans with 3-Hydroxyphenylacetate 6-Hydroxylase and 3,4-Dihydroxyphenylacetate 6-Hydroxylase Activities , 2006, Eukaryotic Cell.

[83]  A. Nishimura,et al.  Purification and Characterization of Isoamyl Alcohol Oxidase ("Mureka"-Forming Enzyme). , 1999, Bioscience, biotechnology, and biochemistry.

[84]  J. Peberdy Protein secretion in filamentous fungi--trying to understand a highly productive black box. , 1994, Trends in biotechnology.

[85]  K. Pfaller,et al.  Among Developmental Regulators, StuA but Not BrlA Is Essential for Penicillin V Production in Penicillium chrysogenum , 2010, Applied and Environmental Microbiology.

[86]  S. Brunak,et al.  Improved prediction of signal peptides: SignalP 3.0. , 2004, Journal of molecular biology.

[87]  J. Martín,et al.  Amplification and disruption of the phenylacetyl-CoA ligase gene of Penicillium chrysogenum encoding an aryl-capping enzyme that supplies phenylacetic acid to the isopenicillin N-acyltransferase. , 2006, The Biochemical journal.

[88]  Carlos García-Estrada,et al.  Proteome Analysis of the Penicillin Producer Penicillium chrysogenum , 2010, Molecular & Cellular Proteomics.

[89]  C. García-Estrada,et al.  Regulation and compartmentalization of β‐lactam biosynthesis , 2010, Microbial biotechnology.

[90]  J. Heijnen,et al.  Cytosolic NADPH metabolism in penicillin-G producing and non-producing chemostat cultures of Penicillium chrysogenum. , 2007, Metabolic engineering.

[91]  K. Isono,et al.  Genome sequencing and analysis of Aspergillus oryzae , 2005, Nature.

[92]  D. Hawksworth,et al.  Where are all the undescribed fungi? , 1997, Phytopathology.

[93]  Richard Kerkman,et al.  Functional characterization of the penicillin biosynthetic gene cluster of Penicillium chrysogenum Wisconsin54-1255. , 2007, Fungal genetics and biology : FG & B.

[94]  H. Ro,et al.  Proteomic analysis of early phase of conidia germination in Aspergillus nidulans. , 2010, Fungal genetics and biology : FG & B.

[95]  G. Turner,et al.  Analysis of a commercially improved Penicillium chrysogenum strain series: involvement of recombinogenic regions in amplification and deletion of the penicillin biosynthesis gene cluster , 1997, Journal of Industrial Microbiology and Biotechnology.

[96]  Motoyuki Shimizu,et al.  Proteomic analysis of Aspergillus nidulans cultured under hypoxic conditions , 2009, Proteomics.

[97]  M. Hecker,et al.  Characterization of proteome alterations in Phanerochaete chrysosporium in response to lead exposure , 2011, Proteome Science.

[98]  C. García-Estrada,et al.  The Penicillium Chrysogenum Extracellular Proteome. Conversion from a Food-rotting Strain to a Versatile Cell Factory for White Biotechnology* , 2010, Molecular & Cellular Proteomics.

[99]  M. Flaishman,et al.  Cloning of a gene expressed during appressorium formation by Colletotrichum gloeosporioides and a marked decrease in virulence by disruption of this gene. , 1995, The Plant cell.

[100]  E. Werner,et al.  Analysis of the Aspergillus fumigatus Proteome Reveals Metabolic Changes and the Activation of the Pseurotin A Biosynthesis Gene Cluster in Response to Hypoxia , 2011, Journal of proteome research.

[101]  Jean-Marc Daran,et al.  Exploring and dissecting genome-wide gene expression responses of Penicillium chrysogenum to phenylacetic acid consumption and penicillinG production , 2009, BMC Genomics.

[102]  N. Blom,et al.  Feature-based prediction of non-classical and leaderless protein secretion. , 2004, Protein engineering, design & selection : PEDS.

[103]  A. Driessen,et al.  Nonlinear Biosynthetic Gene Cluster Dose Effect on Penicillin Production by Penicillium chrysogenum , 2010, Applied and Environmental Microbiology.

[104]  Olaf Kniemeyer,et al.  Optimisation of a 2-D gel electrophoresis protocol for the human-pathogenic fungus Aspergillus fumigatus , 2006, Current Genetics.

[105]  J. Ohnishi,et al.  Efficient 40 degrees C fermentation of L-lysine by a new Corynebacterium glutamicum mutant developed by genome breeding. , 2003, Applied microbiology and biotechnology.

[106]  J. Nosanchuk,et al.  Melanin and fungi , 2003, Current opinion in infectious diseases.

[107]  K. Chater,et al.  Changes in the Extracellular Proteome Caused by the Absence of the bldA Gene Product, a Developmentally Significant tRNA, Reveal a New Target for the Pleiotropic Regulator AdpA in Streptomyces coelicolor , 2005, Journal of bacteriology.

[108]  Catherine Rabouille,et al.  Mechanisms of regulated unconventional protein secretion , 2009, Nature Reviews Molecular Cell Biology.

[109]  J. Martín,et al.  Biochemical characterization and molecular genetics of nine mutants of Penicillium chrysogenum impaired in penicillin biosynthesis. , 1993, The Journal of biological chemistry.

[110]  de Winde,et al.  University of Groningen Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88 Pel, , 2006 .

[111]  P. Skatrud,et al.  Cloning and expression of a hybrid Streptomyces clavuligerus cefE gene in Penicillium chrysogenum , 1990, Current Genetics.

[112]  D. Hawksworth The magnitude of fungal diversity: the 1.5 million species estimate revisited * * Paper presented at , 2001 .

[113]  K. Raper,et al.  Penicillin: II. Natural Variation and Penicillin Production in Penicillium notatum and Allied Species. , 1944, Journal of bacteriology.