A minmax regret version of the time-dependent shortest path problem

Abstract We consider a shortest path problem where the arc costs depend on their relative position on the given path and there exist uncertain cost parameters. We study a minmax regret version of the problem under different types of uncertainty of the involved parameters. First, we provide a Mixed Integer Linear Programming (MILP) formulation by using strong duality in the uncertainty interval case. Second, we develop three algorithms based on Benders decomposition for general polyhedral sets of uncertainty. In order to make the algorithms faster we use constant factor approximations to initialize them. Finally, we report some computational experiments for different uncertainty sets in order to compare the behavior of the proposed algorithms.

[1]  Hande Yaman,et al.  The Robust Shortest Path Problem with Interval Data , 2012 .

[2]  Jay E. Aronson,et al.  A survey of dynamic network flows , 1989 .

[3]  Ebrahim Nasrabadi,et al.  Dynamic shortest path problems with time-varying costs , 2010, Optim. Lett..

[4]  Paolo Toth,et al.  Nominal and robust train timetabling problems , 2012, Eur. J. Oper. Res..

[5]  Igor Averbakh,et al.  The Robust Set Covering Problem with interval data , 2011, Annals of Operations Research.

[6]  K. Cooke,et al.  The shortest route through a network with time-dependent internodal transit times , 1966 .

[7]  Marcus Poggi de Aragão,et al.  Exact algorithm over an arc-time-indexed formulation for parallel machine scheduling problems , 2010, Math. Program. Comput..

[8]  Tinghuai Ma,et al.  A survey on grid task scheduling , 2011, Int. J. Comput. Appl. Technol..

[9]  Andrew V. Goldberg,et al.  Shortest paths algorithms: Theory and experimental evaluation , 1994, SODA '94.

[10]  Adam Kasperski,et al.  An approximation algorithm for interval data minmax regret combinatorial optimization problems , 2006, Inf. Process. Lett..

[11]  Eduardo Conde,et al.  A 2-approximation for minmax regret problems via a mid-point scenario optimal solution , 2010, Oper. Res. Lett..

[12]  Igor Averbakh,et al.  Interval data minmax regret network optimization problems , 2004, Discret. Appl. Math..

[13]  Paolo Toth,et al.  Scheduling extra freight trains on railway networks , 2010 .

[14]  Roberto Montemanni,et al.  The robust shortest path problem with interval data via Benders decomposition , 2005, 4OR.

[15]  Martine Labbé,et al.  Reduction approaches for robust shortest path problems , 2011, Comput. Oper. Res..

[16]  Eduardo Conde,et al.  On a constant factor approximation for minmax regret problems using a symmetry point scenario , 2012, Eur. J. Oper. Res..

[17]  Gregor von Laszewski,et al.  QoS guided Min-Min heuristic for grid task scheduling , 2003, Journal of Computer Science and Technology.

[18]  Christoph Helmberg,et al.  Dynamic graph generation for the shortest path problem in time expanded networks , 2014, Math. Program..

[19]  Roberto Montemanni,et al.  An exact algorithm for the robust shortest path problem with interval data , 2004, Comput. Oper. Res..

[20]  Maria Grazia Scutellà,et al.  Dynamic shortest paths minimizing travel times and costs , 2001, Networks.

[21]  Ralf Borndörfer,et al.  Models for Railway Track Allocation , 2007, ATMOS.

[22]  Paolo Toth,et al.  The Time Dependent Traveling Salesman Planning Problem in Controlled Airspace , 2016 .

[23]  Artur Alves Pessoa,et al.  The time dependent traveling salesman problem: polyhedra and algorithm , 2013, Math. Program. Comput..

[24]  Maurice Queyranne,et al.  The Time-Dependent Traveling Salesman Problem and Its Application to the Tardiness Problem in One-Machine Scheduling , 1978, Oper. Res..

[25]  Russ J. Vander Wiel,et al.  An exact solution approach for the time‐dependent traveling‐salesman problem , 1996 .

[26]  Gilles Savard,et al.  The time-dependent traveling salesman problem and single machine scheduling problems with sequence dependent setup times , 2006, Discret. Optim..

[27]  Justo Puerto,et al.  Ordered weighted average combinatorial optimization: Formulations and their properties , 2014, Discret. Appl. Math..

[28]  Stanislaw Gawiejnowicz,et al.  Time-Dependent Scheduling , 2008, Monographs in Theoretical Computer Science. An EATCS Series.

[29]  Tinghuai Ma,et al.  Grid Task Scheduling: Algorithm Review , 2011 .

[30]  Michel Gendreau,et al.  The traveling salesman problem with time-dependent service times , 2016, Eur. J. Oper. Res..