Albumin and its application in drug delivery

Introduction: Rapid clearance of drugs from the body results in short therapeutic half-life and is an integral property of many protein and peptide-based drugs. To maintain the desired therapeutic effect patients are required to administer higher doses more frequently, which is inconvenient and risks undesirable side effects. Drug delivery technologies aim to minimise the number of administrations and dose-related toxicity while maximising therapeutic efficacy. Areas covered: This review describes albumin’s inherent biochemical and biophysical properties, which make it an attractive drug delivery platform and the developmental status of drugs that are associated, conjugated or genetically fused with albumin. Albumin interacts with a number of cell surface receptors including gp18, gp30, gp60, FcRn, cubilin and megalin. The importance of albumin’s interaction with the FcRn receptor, the basis for albumin’s long circulatory half-life, is described, as are engineered albumins with improved pharmacokinetics. Albumin naturally accumulates at tumours and sites of inflammation, a characteristic which can be augmented by the addition of targeting ligands. The development of albumin drug conjugates which reply upon this property is described. Expert opinion: Albumin’s inherent biochemical and biophysical properties make it an ideal drug delivery platform. Recent advances in our understanding of albumin physiology and the improvement in albumin-based therapies strongly suggest that albumin-based therapies have a significant advantage over alternative technologies in terms of half-life, stability, versatility, safety and ease of manufacture. Given the importance of the albumin:FcRn interaction, the interpretation of the pharmacokinetic and pharmacodynamic profiles of albumin-based therapeutics with disturbed albumin:FcRn interaction may have to be reassessed. The FcRn receptor has additional functionality, especially in relation to immunology, antigen presentation and delivery of proteins across mucosal membranes, consequently albumin-based fusions and conjugates may have a future role in oral and pulmonary-based vaccines and drug delivery.

[1]  U. Ribel,et al.  Albumin binding of insulins acylated with fatty acids: characterization of the ligand-protein interaction and correlation between binding affinity and timing of the insulin effect in vivo. , 1995, The Biochemical journal.

[2]  A. Saito,et al.  Molecular Mechanisms of Receptor-Mediated Endocytosis in the Renal Proximal Tubular Epithelium , 2009, Journal of biomedicine & biotechnology.

[3]  Felix Kratz,et al.  Impact of albumin on drug delivery--new applications on the horizon. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[4]  F. Muggia,et al.  Nanoparticle albumin-bound paclitaxel (nab-paclitaxel): extending its indications , 2014, Expert opinion on drug safety.

[5]  A. D. De Groot,et al.  Do Tregitopes have the potential to impact the current treatment landscape of autoimmune diseases ? , 2013 .

[6]  J. Dumont,et al.  Monomeric Fc‐Fusion Proteins , 2013 .

[7]  V. Bhakta,et al.  Modulation of clearance of recombinant serum albumin by either glycosylation or truncation. , 2000, Thrombosis research.

[8]  A. Wunder,et al.  Plasma protein (albumin) catabolism by the tumor itself--implications for tumor metabolism and the genesis of cachexia. , 1997, Critical reviews in oncology/hematology.

[9]  D. Aggarwal,et al.  Paclitaxel and its formulations. , 2002, International journal of pharmaceutics.

[10]  D. Combs,et al.  Phosphate ester serum albumin affinity tags greatly improve peptide half-life in vivo. , 2003, Bioorganic & medicinal chemistry letters.

[11]  K. Mostov,et al.  An Fc receptor structurally related to MHC class I antigens , 1989, Nature.

[12]  J Verweij,et al.  Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. , 2001, European journal of cancer.

[13]  M. Otagiri,et al.  Changes of net charge and alpha-helical content affect the pharmacokinetic properties of human serum albumin. , 2007, Biochimica et biophysica acta.

[14]  L. Cohn,et al.  Albumin in Health and Disease: Causes and Treatment of Hypoalbuminemia* , 2004 .

[15]  Jonghan Kim,et al.  Perspective-- FcRn transports albumin: relevance to immunology and medicine. , 2006, Trends in immunology.

[16]  T. Waldmann,et al.  Familial hypercatabolic hypoproteinemia. A disorder of endogenous catabolism of albumin and immunoglobulin. , 1990, The Journal of clinical investigation.

[17]  Felix Kratz,et al.  A clinical update of using albumin as a drug vehicle - a commentary. , 2014, Journal of controlled release : official journal of the Controlled Release Society.

[18]  J. Bading,et al.  Biodistribution and tumor imaging of an anti-CEA single-chain antibody-albumin fusion protein. , 2008, Nuclear medicine and biology.

[19]  D. Roopenian,et al.  Clinical Ramifications of the MHC Family Fc Receptor FcRn , 2010, Journal of Clinical Immunology.

[20]  B. Bode An overview of the pharmacokinetics, efficacy and safety of liraglutide. , 2012, Diabetes research and clinical practice.

[21]  M. Socinski,et al.  Weekly nab-paclitaxel in combination with carboplatin versus solvent-based paclitaxel plus carboplatin as first-line therapy in patients with advanced non-small-cell lung cancer: final results of a phase III trial. , 2012, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[22]  J. Morales-Sanfrutos,et al.  Bicyclization and tethering to albumin yields long-acting peptide antagonists. , 2012, Journal of medicinal chemistry.

[23]  Min Zhang,et al.  The pharmacokinetics of an albumin-binding Fab (AB.Fab) can be modulated as a function of affinity for albumin. , 2006, Protein engineering, design & selection : PEDS.

[24]  A. Wunder,et al.  The loading rate determines tumor targeting properties of methotrexate albumin conjugates in rats , 1997, Anti-cancer drugs.

[25]  Y. Ohshima,et al.  [Familial hypercatabolic hypoproteinemia]. , 2000, Ryoikibetsu shokogun shirizu.

[26]  C. Andresen,et al.  Phase I Comparability of Recombinant Human Albumin and Human Serum Albumin , 2005, Journal of clinical pharmacology.

[27]  Neil Desai,et al.  Challenges in Development of Nanoparticle-Based Therapeutics , 2012, The AAPS Journal.

[28]  D. Scott,et al.  In Vitro and In Vivo Studies of IgG-derived Treg Epitopes (Tregitopes): A Promising New Tool for Tolerance Induction and Treatment of Autoimmunity , 2012, Journal of Clinical Immunology.

[29]  A. Malik Targeting endothelial cell surface receptors: novel mechanisms of microvascular endothelial barrier transport , 2009, Hamdan Medical Journal.

[30]  M. Otagiri,et al.  Albumin as a nitric oxide-traffic protein: characterization, biochemistry and possible future therapeutic applications. , 2009, Drug metabolism and pharmacokinetics.

[31]  M. Galliano,et al.  Mutations and polymorphisms of the gene of the major human blood protein, serum albumin , 2008, Human mutation.

[32]  Eun Seong Lee,et al.  Human serum albumin-TRAIL conjugate for the treatment of rheumatoid arthritis. , 2014, Bioconjugate chemistry.

[33]  I. Thorup,et al.  The Human GLP-1 Analogs Liraglutide and Semaglutide: Absence of Histopathological Effects on the Pancreas in Nonhuman Primates , 2014, Diabetes.

[34]  R. Langer,et al.  Transepithelial Transport of Fc-Targeted Nanoparticles by the Neonatal Fc Receptor for Oral Delivery , 2013, Science Translational Medicine.

[35]  P. Sadler,et al.  Role of Tyr84 in controlling the reactivity of Cys34 of human albumin , 2005, The FEBS journal.

[36]  Michael M. Schmidt,et al.  Crystal structure of an HSA/FcRn complex reveals recycling by competitive mimicry of HSA ligands at a pH-dependent hydrophobic interface. , 2013, Structure.

[37]  V. Trezza,et al.  Human serum albumin: from bench to bedside. , 2012, Molecular aspects of medicine.

[38]  T. Weimer,et al.  Recombinant Albumin Fusion Proteins , 2013 .

[39]  P. Home,et al.  Insulin detemir: from concept to clinical experience , 2006, Expert opinion on pharmacotherapy.

[40]  Lucy J. Holt,et al.  Anti-serum albumin domain antibodies for extending the half-lives of short lived drugs. , 2008, Protein engineering, design & selection : PEDS.

[41]  A. Verkleij,et al.  Efficient inhibition of EGFR signalling and of tumour growth by antagonistic anti-EGFR Nanobodies , 2007, Cancer Immunology, Immunotherapy.

[42]  O. Quraishi,et al.  Kringle 5 peptide-albumin conjugates with anti-migratory activity. , 2004, Bioorganic & medicinal chemistry letters.

[43]  G. Fadini,et al.  Comparative effectiveness of liraglutide in the treatment of type 2 diabetes , 2014, Diabetes, metabolic syndrome and obesity : targets and therapy.

[44]  J. Andersen,et al.  Structure-based mutagenesis reveals the albumin-binding site of the neonatal Fc receptor , 2012, Nature Communications.

[45]  T. Waldmann,et al.  Familial hypercatabolic hypoproteinemia caused by deficiency of the neonatal Fc receptor, FcRn, due to a mutant beta2-microglobulin gene. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[46]  W. Gradishar,et al.  Albumin-bound paclitaxel: a next-generation taxane , 2006, Expert opinion on pharmacotherapy.

[47]  M. Otagiri,et al.  Poly-S-Nitrosated Albumin as a Safe and Effective Multifunctional Antitumor Agent: Characterization, Biochemistry and Possible Future Therapeutic Applications , 2013, BioMed research international.

[48]  Felix Kratz,et al.  Clinical impact of serum proteins on drug delivery. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[49]  P. Verroust,et al.  Cubilin is essential for albumin reabsorption in the renal proximal tubule. , 2010, Journal of the American Society of Nephrology : JASN.

[50]  N. Bhagavan,et al.  Novel insights into the pleiotropic effects of human serum albumin in health and disease. , 2013, Biochimica et biophysica acta.

[51]  Min Zhang,et al.  Albumin Binding as a General Strategy for Improving the Pharmacokinetics of Proteins* , 2002, The Journal of Biological Chemistry.

[52]  D. Michaelson,et al.  Antibodies to human serum albumin in familial dysautonomia. , 1993, International archives of allergy and immunology.

[53]  N. Dodsworth,et al.  Comparative studies of recombinant human albumin and human serum albumin derived by blood fractionation , 1996, Biotechnology and applied biochemistry.

[54]  N. Subbarao,et al.  Ligand binding strategies of human serum albumin: how can the cargo be utilized? , 2010, Chirality.

[55]  R. Flückiger,et al.  Albumin-directed antibodies in diabetes: demonstration of human serum albumin-directed IgM autoantibodies , 1986, Diabetologia.

[56]  Theodore W Randolph,et al.  Selective domain stabilization as a strategy to reduce human serum albumin-human granulocyte colony stimulating factor aggregation rate. , 2012, Journal of pharmaceutical sciences.

[57]  Felix Kratz,et al.  Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[58]  R. Horvat,et al.  Preferential interaction of albumin-binding proteins, gp30 and gp18, with conformationally modified albumins. Presence in many cells and tissues with a possible role in catabolism. , 1992, The Journal of biological chemistry.

[59]  G. Molema,et al.  Evaluation of RGD-targeted albumin carriers for specific delivery of auristatin E to tumor blood vessels. , 2006, Bioconjugate chemistry.

[60]  V. Rustgi Albinterferon alfa-2b, a novel fusion protein of human albumin and human interferon alfa-2b, for chronic hepatitis C. , 2009, Current medical research and opinion.

[61]  P. Bjorkman,et al.  Expression and crystallization of a soluble and functional form of an Fc receptor related to class I histocompatibility molecules. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[62]  A. Lluch,et al.  Treatment innovations for metastatic breast cancer: nanoparticle albumin-bound (NAB) technology targeted to tumors. , 2014, Critical reviews in oncology/hematology.

[63]  Soumitra S Ghosh,et al.  Novel Exenatide Analogs with Peptidic Albumin Binding Domains: Potent Anti-Diabetic Agents with Extended Duration of Action , 2014, PloS one.

[64]  B. Zhang,et al.  Intracellular delivery mechanism and brain delivery kinetics of biodegradable cationic bovine serum albumin-conjugated polymersomes , 2012, International journal of nanomedicine.

[65]  Daichang Yang,et al.  Human serum albumin from recombinant DNA technology: challenges and strategies. , 2013, Biochimica et biophysica acta.

[66]  Charles L Brooks,et al.  Albumin binding to FcRn: distinct from the FcRn-IgG interaction. , 2006, Biochemistry.

[67]  J. Hamilton NMR reveals molecular interactions and dynamics of fatty acid binding to albumin. , 2013, Biochimica et biophysica acta.

[68]  A. Misra,et al.  Proteins: emerging carrier for delivery of cancer therapeutics , 2013, Expert opinion on drug delivery.

[69]  T. Amisaki,et al.  Fatty acid binding to serum albumin: molecular simulation approaches. , 2013, Biochimica et biophysica acta.

[70]  Kaoru Kobayashi Summary of recombinant human serum albumin development. , 2006, Biologicals : journal of the International Association of Biological Standardization.

[71]  S. Curry,et al.  Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin. , 2000, Journal of molecular biology.

[72]  Leslie R Evans,et al.  Albumin as a versatile platform for drug half-life extension. , 2013, Biochimica et biophysica acta.

[73]  A. D. Groot,et al.  Do Tregitopes have the potential to impact the current treatment landscape of autoimmune diseases , 2013 .

[74]  J. Wetterö,et al.  Beware of Antibodies to Dietary Proteins in “Antigen-specific” Immunoassays! Falsely Positive Anticytokine Antibody Tests Due to Reactivity with Bovine Serum Albumin in Rheumatoid Arthritis (The Swedish TIRA Project) , 2011, The Journal of Rheumatology.

[75]  H. Frierson,et al.  Loss of SPARC in bladder cancer enhances carcinogenesis and progression. , 2013, The Journal of clinical investigation.

[76]  S. Curry,et al.  O2 and CO binding properties of artificial hemoproteins formed by complexing iron protoporphyrin IX with human serum albumin mutants. , 2005, Journal of the American Chemical Society.

[77]  F. Rüker,et al.  The Three Recombinant Domains of Human Serum Albumin , 1999, The Journal of Biological Chemistry.

[78]  A. Plückthun,et al.  Orthogonal assembly of a designed ankyrin repeat protein-cytotoxin conjugate with a clickable serum albumin module for half-life extension. , 2013, Bioconjugate chemistry.

[79]  H. Michel,et al.  Preparation and characterization of albumin conjugates of a truncated peptide YY analogue for half-life extension. , 2013, Bioconjugate chemistry.

[80]  A. West,et al.  Crystal structure and immunoglobulin G binding properties of the human major histocompatibility complex-related Fc receptor(,). , 2000, Biochemistry.

[81]  Herren Wu,et al.  Structural Insights into Neonatal Fc Receptor-based Recycling Mechanisms , 2014, The Journal of Biological Chemistry.

[82]  Shagufta A. Khan,et al.  Naturally Occurring Anti-albumin Antibodies Are Responsible for False Positivity in Diagnosis of Autoimmune Premature Ovarian Failure , 2006, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[83]  R. Leone,et al.  Safety and efficacy evaluation of albumin-bound paclitaxel , 2014, Expert opinion on drug safety.

[84]  W. Khan,et al.  Antibodies against Gluco-Oxidatively Modified Human Serum Albumin Detected in Diabetes-Associated Complications , 2010, International Archives of Allergy and Immunology.

[85]  S. Qiao,et al.  Immune and non-immune functions of the (not so) neonatal Fc receptor, FcRn , 2009, Seminars in Immunopathology.

[86]  W. Haefeli,et al.  Pharmacokinetics of 5‐Aminofluorescein‐Albumin, a Novel Fluorescence Marker of Brain Tumors During Surgery , 2011, Journal of clinical pharmacology.

[87]  G. Gasbarrini,et al.  Clinical significance of antibodies to polymerized human albumin detected by enzyme-linked immunosorbent assay , 1988, La Ricerca in clinica e in laboratorio.

[88]  S. Akilesh,et al.  FcRn: the neonatal Fc receptor comes of age , 2007, Nature Reviews Immunology.

[89]  D. Roopenian,et al.  Efficient Mucosal Delivery of Vaccine Using the FcRn-Mediated IgG Transfer Pathway , 2011, Nature Biotechnology.

[90]  S. Curry,et al.  Structural basis of the drug-binding specificity of human serum albumin. , 2005, Journal of molecular biology.

[91]  P. Brick,et al.  Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites , 1998, Nature Structural Biology.

[92]  S. Lippard,et al.  Pt(IV) Prodrugs Designed to Bind Non-Covalently to Human Serum Albumin for Drug Delivery , 2014, Journal of the American Chemical Society.

[93]  Jingxia Cui,et al.  Direct comparison of two albumin-based paclitaxel-loaded nanoparticle formulations: is the crosslinked version more advantageous? , 2014, International journal of pharmaceutics.

[94]  Damon L. Meyer,et al.  Improved efficacy alpha(v)beta(3)-targeted albumin conjugates by conjugation of a novel auristatin derivative , 2007 .

[95]  F. Albert,et al.  Laser-induced fluorescence detection of malignant gliomas using fluorescein-labeled serum albumin: Experimental and preliminary clinical results , 2000, Neurological research.

[96]  D. Richardson,et al.  Unraveling the mysteries of serum albumin—more than just a serum protein , 2014, Front. Physiol..

[97]  Yi Huang,et al.  Selective delivery of interleukine-1 receptor antagonist to inflamed joint by albumin fusion , 2012, BMC Biotechnology.

[98]  D. Drucker,et al.  Development and characterization of a glucagon-like peptide 1-albumin conjugate: the ability to activate the glucagon-like peptide 1 receptor in vivo. , 2003, Diabetes.

[99]  S. Qiao,et al.  Neonatal Fc Receptor: From Immunity to Therapeutics , 2010, Journal of Clinical Immunology.

[100]  E. Fiebiger,et al.  The Immunologic Functions of the Neonatal Fc Receptor for IgG , 2012, Journal of Clinical Immunology.

[101]  R. Cardone,et al.  The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis , 2005, Nature Reviews Cancer.

[102]  L. Abrahmsén,et al.  Engineering of a femtomolar affinity binding protein to human serum albumin. , 2008, Protein engineering, design & selection : PEDS.

[103]  D C Carter,et al.  Conformational Transitions of the Three Recombinant Domains of Human Serum Albumin Depending on pH* , 2000, The Journal of Biological Chemistry.

[104]  J. Andersen,et al.  The versatile MHC class I-related FcRn protects IgG and albumin from degradation: implications for development of new diagnostics and therapeutics. , 2009, Drug metabolism and pharmacokinetics.

[105]  W. Hennink,et al.  Nanobody-albumin nanoparticles (NANAPs) for the delivery of a multikinase inhibitor 17864 to EGFR overexpressing tumor cells. , 2013, Journal of controlled release : official journal of the Controlled Release Society.

[106]  Bo Zhang,et al.  RGD-conjugated albumin nanoparticles as a novel delivery vehicle in pancreatic cancer therapy , 2012, Cancer biology & therapy.

[107]  M. Otagiri,et al.  Altered chain-length and glycosylation modify the pharmacokinetics of human serum albumin. , 2009, Biochimica et biophysica acta.

[108]  J. Castaigne,et al.  Identification of CJC-1131-albumin bioconjugate as a stable and bioactive GLP-1(7-36) analog. , 2004, Bioorganic & medicinal chemistry letters.

[109]  Felix Kratz,et al.  Synthesis, Cleavage Profile, and Antitumor Efficacy of an Albumin‐Binding Prodrug of Methotrexate that is Cleaved by Plasmin and Cathepsin B , 2007, Archiv der Pharmazie.

[110]  Rebekah L. Gundry,et al.  Investigation of an albumin‐enriched fraction of human serum and its albuminome , 2007, Proteomics. Clinical applications.

[111]  T. Peters,et al.  All About Albumin: Biochemistry, Genetics, and Medical Applications , 1995 .

[112]  M. Mita,et al.  Pharmacokinetic study of aldoxorubicin in patients with solid tumors , 2014, Investigational New Drugs.

[113]  D. Sansonno,et al.  An enzyme-linked immunosorbent assay for the detection of autoantibodies to albumin. , 1986, Journal of immunological methods.

[114]  Jonghan Kim,et al.  Kinetics of FcRn-mediated recycling of IgG and albumin in human: pathophysiology and therapeutic implications using a simplified mechanism-based model. , 2007, Clinical immunology.

[115]  J. Castaigne,et al.  Synthesis and evaluation of insulin-human serum albumin conjugates. , 2005, Bioconjugate chemistry.

[116]  D. Drucker,et al.  An albumin-exendin-4 conjugate engages central and peripheral circuits regulating murine energy and glucose homeostasis. , 2008, Gastroenterology.

[117]  S. Hober,et al.  The albumin-binding domain as a scaffold for protein engineering , 2013, Computational and structural biotechnology journal.

[118]  P. Sadler,et al.  Structure, Properties, and Engineering of the Major Zinc Binding Site on Human Albumin* , 2009, The Journal of Biological Chemistry.

[119]  Toru Maruyama,et al.  The effect of glycation on the structure, function and biological fate of human serum albumin as revealed by recombinant mutants. , 2003, Biochimica et biophysica acta.

[120]  Sarah L. Anderson,et al.  Once-weekly albiglutide in the management of type 2 diabetes: patient considerations , 2014, Patient preference and adherence.

[121]  Alessandra Villa,et al.  New strategy for the extension of the serum half-life of antibody fragments. , 2009, Bioconjugate chemistry.

[122]  Toru Maruyama,et al.  Albumin-drug interaction and its clinical implication. , 2013, Biochimica et biophysica acta.

[123]  M. Galliano,et al.  Human serum albumin isoforms: genetic and molecular aspects and functional consequences. , 2013, Biochimica et biophysica acta.

[124]  I. Sandlie,et al.  Cross-species Binding Analyses of Mouse and Human Neonatal Fc Receptor Show Dramatic Differences in Immunoglobulin G and Albumin Binding* , 2009, The Journal of Biological Chemistry.

[125]  Magnar Bjørås,et al.  Extending Serum Half-life of Albumin by Engineering Neonatal Fc Receptor (FcRn) Binding* , 2014, The Journal of Biological Chemistry.

[126]  G. Di Stefano,et al.  Lactosaminated human albumin, a hepatotropic carrier of drugs. , 2010, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[127]  G. Ryan,et al.  Review of the therapeutic uses of liraglutide. , 2011, Clinical therapeutics.

[128]  Enzo Terreno,et al.  The extraordinary ligand binding properties of human serum albumin , 2005, IUBMB life.

[129]  D. Pearl,et al.  The Major Histocompatibility Complex–related Fc Receptor for IgG (FcRn) Binds Albumin and Prolongs Its Lifespan , 2003, The Journal of experimental medicine.

[130]  C Russell Middaugh,et al.  Biophysical characterization and stabilization of the recombinant albumin fusion protein sEphB4-HSA. , 2012, Journal of pharmaceutical sciences.

[131]  A. Saifer,et al.  The free fatty acids bound to human serum albumin , 1961 .

[132]  W. Bal,et al.  Binding of transition metal ions to albumin: sites, affinities and rates. , 2013, Biochimica et biophysica acta.

[133]  C. R. Leemans,et al.  Improved tumor targeting of anti–epidermal growth factor receptor Nanobodies through albumin binding: taking advantage of modular Nanobody technology , 2008, Molecular Cancer Therapeutics.

[134]  T. Seufferlein,et al.  Nab-Paclitaxel for Metastatic Pancreatic Cancer: Clinical Outcomes and Potential Mechanisms of Action , 2014, Oncology Research and Treatment.

[135]  Jun Fang,et al.  S-Nitrosated human serum albumin dimer is not only a novel anti-tumor drug but also a potentiator for anti-tumor drugs with augmented EPR effects. , 2012, Bioconjugate chemistry.

[136]  U. Müller-Ladner,et al.  Targeted drug delivery by in vivo coupling to endogenous albumin: an albumin-binding prodrug of methotrexate (MTX) is better than MTX in the treatment of murine collagen-induced arthritis , 2008, Annals of the rheumatic diseases.

[137]  S. Gough,et al.  Insulin degludec: overview of a novel ultra long‐acting basal insulin , 2013, Diabetes, obesity & metabolism.

[138]  Eva Frei,et al.  Native albumin for targeted drug delivery , 2010, Expert opinion on drug delivery.

[139]  R. Ptak,et al.  Albumin-conjugated C34 Peptide HIV-1 Fusion Inhibitor , 2008, Journal of Biological Chemistry.

[140]  Adam Walker,et al.  Albumin‐Binding Fusion Proteins in the Development of Novel Long‐Acting Therapeutics , 2013 .

[141]  Jennifer Liu,et al.  Prolonged Circulation of Recombinant Human Granulocyte–Colony Stimulating Factor by Covalent Linkage to Albumin Through a Heterobifunctional Polyethylene Glycol , 1995, Pharmaceutical Research.

[142]  P. Bjorkman,et al.  Crystal structure at 2.2 Å resolution of the MHC-related neonatal Fc receptor , 1994, Nature.

[143]  Theodore W Randolph,et al.  Selective domain stabilization as a strategy to reduce fusion protein aggregation. , 2012, Journal of pharmaceutical sciences.

[144]  J. Andersen,et al.  Dissection of the Neonatal Fc Receptor (FcRn)-Albumin Interface Using Mutagenesis and Anti-FcRn Albumin-blocking Antibodies* , 2014, The Journal of Biological Chemistry.

[145]  V. Préat,et al.  RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. , 2012, Molecular pharmaceutics.

[146]  D. Bridon,et al.  Site specific 1:1 opioid:albumin conjugate with in vitro activity and long in vivo duration. , 2000, Bioconjugate chemistry.

[147]  J. Schnitzer,et al.  High affinity binding, endocytosis, and degradation of conformationally modified albumins. Potential role of gp30 and gp18 as novel scavenger receptors. , 1993, The Journal of biological chemistry.

[148]  M. Otagiri,et al.  Oxidation of Arg-410 promotes the elimination of human serum albumin. , 2006, Biochimica et biophysica acta.