First-principles calculations on mechanical properties of Rh2MnZn Heusler alloy

Heusler alloys are a huge family of binary, ternary and quaternary compounds and contain a wide range of unique properties, which made Heusler compounds to be the efficient materials for diverse applications. When it comes to the commercial applications mechanical properties are worth of check on and turn out to be the significant factor in the processing and final use of the materials. These properties make the study proficient by examine the nature of material under external pressure. In this study, we estimated mechanical properties of Rh2MnZn full-Heusler alloy using the full-potential linearized augmented plane wave method (FP-LAPW) method within the density functional theory (DFT). We have obtained C11, C12 and C44 elastic constants due to cubic symmetry using Charpin method implemented in Wien2k code. Further, using these elastic constants mechanical properties such as bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, anisotropic factor and Cauchy’s pressure are calculated. These moduli depicted hardness, ductility and elastic anisotropy of the alloy.

[1]  S. Dar,et al.  First‐principles study on structural, electronic, magnetic, elastic, mechanical and thermodynamic properties of Mn2PtCo Heusler alloy , 2021, International Journal of Energy Research.

[2]  Esin Ilhan,et al.  First-principles calculations to investigate the structural, electronic, elastic, vibrational and thermodynamic properties of the full-Heusler alloys X2ScGa (X = Ir and Rh) , 2020, Materials Today Communications.

[3]  Y. Al-Douri,et al.  First-Principles Calculations to Investigate Structural, Electronic, Elastic, Magnetic, and Thermodynamic Properties of Full-Heusler Rh2MnZ (Z = Zr, Hf) , 2020, Journal of Superconductivity and Novel Magnetism.

[4]  S. Dar,et al.  Investigation of the electronic, magnetic, elastic, thermodynamic and thermoelectric properties of Mn2CoCr Heusler compound: A DFT-based simulation , 2020 .

[5]  N. H. Giang,et al.  Mn2CoX (X = P and As) full-Heusler compounds for spintronic applications: Half-metallicity and elastic properties , 2020 .

[6]  A. Saxena,et al.  Half-metallicity in new Heusler alloys Mn2ScZ (Z = Si, Ge, Sn) , 2020, RSC advances.

[7]  S. Dar Investigation of electronic, magnetic, elastic, mechanical, thermodynamic, and thermoelectronic properties of Mn2PtV Heusler alloy: ab initio study , 2020, Journal of Molecular Modeling.

[8]  J. O. Akinlami,et al.  Effects of Y atom substitution on the structural, magnetic, electronic, elastic, mechanical, thermodynamic and thermoelectric properties of Co2YAl (Y = Cr, Mn) Full Heusler alloys from first principles investigations , 2019 .

[9]  Y. Al-Douri,et al.  The Elastic, Electronic and Thermodynamic Properties of a New Cd Based Full Heusler Compounds - A Theoretical Investigation Using DFT Based FP-LMTO Approach , 2019, Acta Physica Polonica A.

[10]  V. Jain,et al.  Electronic Structure, Elastic, Magnetic, and Optical Properties of Fe2MnZ (Z = Si, Ge, and Sn) Full Heusler Alloys: First-Principle Calculations , 2018, Journal of Superconductivity and Novel Magnetism.

[11]  Yongsheng Zhang,et al.  Lattice thermal conductivity evaluated using elastic properties , 2017 .

[12]  G. Fecher,et al.  A Critical Study of the Elastic Properties and Stability of Heusler Compounds: Phase Change and Tetragonal X2YZ Compounds , 2017, 1704.01741.

[13]  Bing Wang,et al.  The mechanical and thermodynamic properties of Heusler compounds Ni2XAl (X = Sc, Ti, V) under pressure and temperature: A first-principles study , 2017 .

[14]  M. Roknuzzaman,et al.  Structural, Elastic, and Electronic Properties of Newly Discovered Li2PtSi3 Superconductor: Effect of Transition Metals , 2016, Journal of Superconductivity and Novel Magnetism.

[15]  G. Murtaza,et al.  Mechanical, electronic and thermodynamic properties of full Heusler compounds Fe 2 VX(X = Al, Ga) , 2015 .

[16]  G. Pilania,et al.  Electronic, magnetic, optical and elastic properties of Fe2YAl (Y=Ti, V and Cr) using first principles methods , 2013 .

[17]  G. Fecher,et al.  Electronic and crystallographic structure, hard x-ray photoemission, and mechanical and transport properties of the half-metallic Heusler compound Co2MnGe , 2011 .

[18]  G. Fecher,et al.  Exploring the details of the martensite-austenite phase transition of the shape memory Heusler compound Mn2NiGa by hard x-ray photoelectron spectroscopy, magnetic and transport measurements , 2011 .

[19]  Richard Dronskowski,et al.  A combinatorial study of inverse Heusler alloys by first‐principles computational methods , 2010, J. Comput. Chem..

[20]  Yanming Ma,et al.  Density functional study of elastic and vibrational properties of the Heusler-type alloys Fe2VAl and Fe2VGa , 2009, 0905.3909.

[21]  G. Fecher,et al.  Structural, electronic, and magnetic properties of tetragonal Mn3-xGa: Experiments and first-principles calculations , 2008 .

[22]  Zhigang Wu,et al.  More accurate generalized gradient approximation for solids , 2005, cond-mat/0508004.

[23]  K. Schwarz,et al.  Electronic structure calculations of solids using the WIEN2k package for material sciences , 2002 .

[24]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[25]  C. Esling,et al.  Elastic properties of polycrystals in the Voigt‐Reuss‐Hill approximation , 1992 .

[26]  S. Pugh XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals , 1954 .

[27]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[28]  A. Zhukov Novel functional magnetic materials : fundamentals and applications , 2015 .

[29]  M. Krȍger Electronic Basis of the Strength of Materials , 2004 .

[30]  H. B. Huntington The Elastic Constants of Crystals , 1958 .

[31]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .