Numerical modeling of pore size and distribution in foamed titanium

[1]  L. Brinson,et al.  A bioactive titanium foam scaffold for bone repair. , 2005, Acta biomaterialia.

[2]  L Catherine Brinson,et al.  Mechanics considerations for microporous titanium as an orthopedic implant material. , 2004, Journal of biomedical materials research. Part A.

[3]  David C. Dunand,et al.  Processing of Titanium Foams , 2004 .

[4]  D. Dunand,et al.  Effect of thermal history on the superplastic expansion of argon-filled pores in titanium: Part I kinetics and microstructure , 2004 .

[5]  D. Dunand,et al.  Effect of thermal history on the superplastic expansion of argon-filled pores in titanium: Part II modeling of kinetics , 2004 .

[6]  L. Brinson,et al.  Effects of Pore Morphology and Bone Ingrowth on Mechanical Properties of Microporous Titanium as an Orthopaedic Implant Material , 2004 .

[7]  D. Dunand,et al.  Microstructure evolution during solid-state foaming of titanium , 2003 .

[8]  D. Dunand,et al.  Solid-state foaming of titanium by hydrogen-induced internal-stress superplasticity , 2003 .

[9]  D. Weichert,et al.  Meso-Mechanical Modeling of Damage in Metal Foams , 2003 .

[10]  H. Shen,et al.  3D finite element analysis of particle-reinforced aluminum , 2002 .

[11]  Javier Segurado,et al.  A numerical approximation to the elastic properties of sphere-reinforced composites , 2002 .

[12]  Mamoru Mabuchi,et al.  Novel titanium foam for bone tissue engineering , 2002 .

[13]  M. Mabuchi,et al.  Processing and mechanical properties of autogenous titanium implant materials , 2002, Journal of materials science. Materials in medicine.

[14]  Arun M. Gokhale,et al.  Micromechanics of complex three-dimensional microstructures , 2001 .

[15]  D. Dunand,et al.  Solid-state foaming of titanium by superplastic expansion of argon-filled pores , 2001 .

[16]  Iwona M Jasiuk,et al.  Scale-dependent bounds on effective elastoplastic response of random composites , 2001 .

[17]  Iwona M Jasiuk,et al.  A micromechanically based couple–stress model of an elastic two-phase composite , 2001 .

[18]  Owen Richmond,et al.  Three dimensional characterization and modeling of particle reinforced metal matrix composites: part I Quantitative description of microstructural morphology , 1999 .

[19]  R. German,et al.  Microstructure quantification procedures in liquid-phase sintered materials , 1999 .

[20]  H. Rack,et al.  Titanium alloys in total joint replacement--a materials science perspective. , 1998, Biomaterials.

[21]  M. Li,et al.  Serial Sectioning Method in the Construction of 3-D Microstructures for Particle-Reinforced MMCs , 1998 .

[22]  Martin Ostoja-Starzewski,et al.  Random field models of heterogeneous materials , 1998 .

[23]  Y. Okazaki,et al.  Cytocompatibility of various metal and development of new titanium alloys for medical implants , 1998 .

[24]  W. Drugan,et al.  A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites , 1996 .

[25]  Y. Ikada,et al.  Significance of interstitial bone ingrowth under load-bearing conditions: a comparison between solid and porous implant materials. , 1995, Biomaterials.

[26]  A. Gokhale,et al.  Can the average particle section size in a metallographic plane be larger than the true average particle size in a three-dimensional microstructure? , 1995 .

[27]  Arun M. Gokhale,et al.  Application of image analysis for characterization of spatial arrangements of features in microstructure , 1995 .

[28]  M. Wolcott Cellular solids: Structure and properties , 1990 .

[29]  David L. McDanels,et al.  Analysis of stress-strain, fracture, and ductility behavior of aluminum matrix composites containing discontinuous silicon carbide reinforcement , 1985 .

[30]  A. Roy,et al.  Modeling and prediction of bulk properties of open-cell carbon foam , 2004 .

[31]  Mingxiao Jiang,et al.  Apparent elastic and elastoplastic behavior of periodic composites , 2002 .

[32]  I. Jasiuk,et al.  A micromechanically based couple-stress model of an elastic orthotropic two-phase composite , 2002 .

[33]  N. G. Davis Enhancement of solid-state foaming of titanium by transformation superplasticity , 2002 .

[34]  S. Timoshenko,et al.  Mechanics of Materials, 3rd Ed. , 1991 .

[35]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .

[36]  Howard E. Boyer,et al.  Atlas of stress-strain curves , 1987 .