Parallel Visual Pathways with Topographic versus Nontopographic Organization Connect the Drosophila Eyes to the Central Brain

Summary One hallmark of the visual system is a strict retinotopic organization from the periphery toward the central brain, where functional imaging in Drosophila revealed a spatially accurate representation of visual cues in the central complex. This raised the question how, on a circuit level, the topographic features are implemented, as the majority of visual neurons enter the central brain converge in optic glomeruli. We discovered a spatial segregation of topographic versus nontopographic projections of distinct classes of medullo-tubercular (MeTu) neurons into a specific visual glomerulus, the anterior optic tubercle (AOTU). These parallel channels synapse onto different tubercular-bulbar (TuBu) neurons, which in turn relay visual information onto specific central complex ring neurons in the bulb neuropil. Hence, our results provide the circuit basis for spatially accurate representation of visual information and highlight the AOTU's role as a prominent relay station for spatial information from the retina to the central brain.

[1]  Gaby Maimon,et al.  A neural circuit architecture for angular integration in Drosophila , 2017, Nature.

[2]  Feng Li,et al.  A connectome and analysis of the adult Drosophila central brain , 2020, eLife.

[3]  Uwe Homberg,et al.  Microglomerular Synaptic Complexes in the Sky-Compass Network of the Honeybee Connect Parallel Pathways from the Anterior Optic Tubercle to the Central Complex , 2016, Front. Behav. Neurosci..

[4]  Hokto Kazama,et al.  Parallel encoding of recent visual experience and self-motion during navigation in Drosophila , 2017, Nature Neuroscience.

[5]  Liqun Luo,et al.  Mosaic Analysis with a Repressible Cell Marker for Studies of Gene Function in Neuronal Morphogenesis , 1999, Neuron.

[6]  G. Rubin,et al.  Neuroarchitecture and neuroanatomy of the Drosophila central complex: A GAL4-based dissection of protocerebral bridge neurons and circuits , 2014, The Journal of comparative neurology.

[7]  Julie H. Simpson,et al.  A GAL4-driver line resource for Drosophila neurobiology. , 2012, Cell reports.

[8]  Vivek Jayaraman,et al.  The insect central complex , 2016, Current Biology.

[9]  H. Otsuna,et al.  Topological and modality-specific representation of somatosensory information in the fly brain , 2017, Science.

[10]  Aljoscha Nern,et al.  Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system , 2015, Proceedings of the National Academy of Sciences.

[11]  L. Vosshall,et al.  The olfactory sensory map in Drosophila. , 2008, Advances in experimental medicine and biology.

[12]  A. Borst Fly visual course control: behaviour, algorithms and circuits , 2014, Nature Reviews Neuroscience.

[13]  Gregory S.X.E. Jefferis,et al.  NBLAST: Rapid, Sensitive Comparison of Neuronal Structure and Construction of Neuron Family Databases , 2016, Neuron.

[14]  Leslie B. Vosshall,et al.  Axonal Targeting of Olfactory Receptor Neurons in Drosophila Is Controlled by Dscam , 2003, Neuron.

[15]  B Schnell,et al.  Processing of horizontal optic flow in three visual interneurons of the Drosophila brain. , 2010, Journal of neurophysiology.

[16]  Julie H. Simpson,et al.  A Systematic Nomenclature for the Insect Brain , 2014, Neuron.

[17]  Rachel I. Wilson,et al.  Sensorimotor experience remaps visual input to a heading-direction network , 2019, Nature.

[18]  Mark Johnson,et al.  Transsynaptic Mapping of Second-Order Taste Neurons in Flies by trans-Tango , 2017, Neuron.

[19]  Vivek Jayaraman,et al.  Building a functional connectome of the Drosophila central complex , 2018, eLife.

[20]  Claude Desplan,et al.  Visual circuits in flies: beginning to see the whole picture , 2015, Current Opinion in Neurobiology.

[21]  Uwe Homberg,et al.  Ultrastructure and orientation of ommatidia in the dorsal rim area of the locust compound eye. , 2002, Arthropod structure & development.

[22]  F. Diao,et al.  A Hard-Wired Glutamatergic Circuit Pools and Relays UV Signals to Mediate Spectral Preference in Drosophila , 2014, Neuron.

[23]  S. Wada,et al.  Spezielle randzonale ommatidien der fliegen (diptera : brachycera): architektur und verteilung in den komplexauaen , 1974, Zeitschrift für Morphologie der Tiere.

[24]  Gregory S.X.E. Jefferis,et al.  Automatic Segmentation of Drosophila Neural Compartments Using GAL4 Expression Data Reveals Novel Visual Pathways , 2015, Current Biology.

[25]  F. Zettler,et al.  Neural principles in vision , 1976 .

[26]  Michael B. Reiser,et al.  Visual projection neurons in the Drosophila lobula link feature detection to distinct behavioral programs , 2016, eLife.

[27]  A. Nose,et al.  Regulation of Layer-Specific Targeting by Reciprocal Expression of a Cell Adhesion Molecule, Capricious , 2006, Neuron.

[28]  B. Dickson,et al.  Genome-scale functional characterization of Drosophila developmental enhancers in vivo , 2014, Nature.

[29]  G. D. Bernard,et al.  Specialized ommatidia of the polarization-sensitive dorsal rim area in the eye of monarch butterflies have non-functional reflecting tapeta , 2009, Cell and Tissue Research.

[30]  V. Jayaraman,et al.  Ring attractor dynamics in the Drosophila central brain , 2017, Science.

[31]  K. Pfeiffer,et al.  Segregation of visual inputs from different regions of the compound eye in two parallel pathways through the anterior optic tubercle of the bumblebee (Bombus ignitus) , 2012, The Journal of comparative neurology.

[32]  Iris Salecker,et al.  Flybow to dissect circuit assembly in the Drosophila brain. , 2014, Methods in molecular biology.

[33]  Peter T Weir,et al.  Functional divisions for visual processing in the central brain of flying Drosophila , 2015, Proceedings of the National Academy of Sciences.

[34]  J. Fellous,et al.  The Processing of Color, Motion, and Stimulus Timing Are Anatomically Segregated in the Bumblebee Brain , 2008, The Journal of Neuroscience.

[35]  L. Luo,et al.  Teneurins Instruct Synaptic Partner Matching in an Olfactory Map , 2012, Nature.

[36]  A. E. Stuart,et al.  From Fruit Flies to Barnacles, Histamine Is the Neurotransmitter of Arthropod Photoreceptors , 1999, Neuron.

[37]  Andreas S. Thum,et al.  The Neural Substrate of Spectral Preference in Drosophila , 2008, Neuron.

[38]  Chi-Hon Lee,et al.  Dynamic labelling of neural connections in multiple colours by trans-synaptic fluorescence complementation , 2015, Nature Communications.

[39]  M. Heisenberg,et al.  Neuronal architecture of the central complex in Drosophila melanogaster , 2004, Cell and Tissue Research.

[40]  K. Fischbach,et al.  Genetic dissection of the anterior optic tract of Drosophila melanogaster , 2004, Cell and Tissue Research.

[41]  Stanley Heinze,et al.  Sun Compass Integration of Skylight Cues in Migratory Monarch Butterflies , 2011, Neuron.

[42]  A. Borst,et al.  Neural Mechanisms for Drosophila Contrast Vision , 2015, Neuron.

[43]  M. Egelhaaf,et al.  Vision in flying insects , 2002, Current Opinion in Neurobiology.

[44]  Uwe Homberg,et al.  Organization and neural connections of the anterior optic tubercle in the brain of the locust, Schistocerca gregaria , 2003, The Journal of comparative neurology.

[45]  Stanley Heinze,et al.  Unraveling the neural basis of insect navigation. , 2017, Current opinion in insect science.

[46]  Alexander Borst,et al.  Visual Projection Neurons Mediating Directed Courtship in Drosophila , 2018, Cell.

[47]  M. Dacke,et al.  Anatomical organization of the brain of a diurnal and a nocturnal dung beetle , 2017, The Journal of comparative neurology.

[48]  Johannes D. Seelig,et al.  Feature detection and orientation tuning in the Drosophila central complex , 2013, Nature.

[49]  W. Gronenberg,et al.  Chromatic Processing in the Anterior Optic Tubercle of the Honey Bee Brain , 2013, The Journal of Neuroscience.

[50]  Aljoscha Nern,et al.  Neural signatures of dynamic stimulus selection in Drosophila , 2017, Nature Neuroscience.

[51]  Ann-Shyn Chiang,et al.  A comprehensive wiring diagram of the protocerebral bridge for visual information processing in the Drosophila brain. , 2013, Cell reports.

[52]  Uwe Homberg,et al.  Polarization-sensitive and light-sensitive neurons in two parallel pathways passing through the anterior optic tubercle in the locust brain. , 2005, Journal of neurophysiology.

[53]  M. Heisenberg,et al.  Distinct memory traces for two visual features in the Drosophila brain , 2006, Nature.

[54]  Thomas R Clandinin,et al.  Motion-detecting circuits in flies: coming into view. , 2014, Annual review of neuroscience.

[55]  Johannes D. Seelig,et al.  Neural dynamics for landmark orientation and angular path integration , 2015, Nature.

[56]  Mehmet F. Keleş,et al.  Object-Detecting Neurons in Drosophila , 2017, Current Biology.

[57]  Michael H. Dickinson,et al.  Sun Navigation Requires Compass Neurons in Drosophila , 2018, Current Biology.

[58]  Barry J. Dickson,et al.  Molecular, Anatomical, and Functional Organization of the Drosophila Olfactory System , 2005, Current Biology.

[59]  Keram Pfeiffer,et al.  Neuroarchitecture of the dung beetle central complex , 2018, The Journal of comparative neurology.

[60]  Cyrille Alexandre,et al.  Flybow: genetic multicolor cell labeling for neural circuit analysis in Drosophila melanogaster , 2011, Nature Methods.

[61]  O. V. Reddy,et al.  Photoreceptor-Derived Activin Promotes Dendritic Termination and Restricts the Receptive Fields of First-Order Interneurons in Drosophila , 2014, Neuron.

[62]  U. Homberg,et al.  Receptive field properties and intensity-response functions of polarization-sensitive neurons of the optic tubercle in gregarious and solitarious locusts. , 2012, Journal of neurophysiology.

[63]  N. Strausfeld Insect Vision and Olfaction: Common Design Principles of Neuronal Organization , 1989 .

[64]  Stanley Heinze,et al.  Maplike Representation of Celestial E-Vector Orientations in the Brain of an Insect , 2007, Science.

[65]  Thomas F. Mathejczyk,et al.  Modality-Specific Circuits for Skylight Orientation in the Fly Visual System , 2019, Current Biology.

[66]  Michael B. Reiser,et al.  Visual Place Learning in Drosophila melanogaster , 2011, Nature.

[67]  W. Gronenberg,et al.  Neural Organization and Visual Processing in the Anterior Optic Tubercle of the Honeybee Brain , 2011, The Journal of Neuroscience.

[68]  Anna Honkanen,et al.  The insect central complex and the neural basis of navigational strategies , 2019, Journal of Experimental Biology.

[69]  Uwe Homberg,et al.  Sky Compass Orientation in Desert Locusts—Evidence from Field and Laboratory Studies , 2015, Front. Behav. Neurosci..

[70]  Basil el Jundi,et al.  Integration of polarization and chromatic cues in the insect sky compass , 2014, Journal of Comparative Physiology A.

[71]  Kei Ito,et al.  Systematic analysis of the visual projection neurons of Drosophila melanogaster. I. Lobula‐specific pathways , 2006, The Journal of comparative neurology.

[72]  Volker Hartenstein,et al.  Visual Input to the Drosophila Central Complex by Developmentally and Functionally Distinct Neuronal Populations , 2017, Current Biology.

[73]  Kei Ito,et al.  Parallel neural pathways in higher visual centers of the Drosophila brain that mediate wavelength-specific behavior , 2014, Front. Neural Circuits.

[74]  R. Strauss The central complex and the genetic dissection of locomotor behaviour , 2002, Current Opinion in Neurobiology.

[75]  D. Hubel,et al.  Segregation of form, color, movement, and depth: anatomy, physiology, and perception. , 1988, Science.

[76]  Roy E. Ritzmann,et al.  Spatial Navigation and the Central Complex: Sensory Acquisition, Orientation, and Motor Control , 2017, Front. Behav. Neurosci..

[77]  Thomas Labhart,et al.  Homothorax Switches Function of Drosophila Photoreceptors from Color to Polarized Light Sensors , 2003, Cell.

[78]  Modality-specific circuits for skylight orientation in the fly visual system , 2019 .

[79]  Kei Ito,et al.  Optic Glomeruli and Their Inputs in Drosophila Share an Organizational Ground Pattern with the Antennal Lobes , 2012, The Journal of Neuroscience.

[80]  S. Wada Ein spezieller Rhabdomerentyp im Fliegenauge , 1971, Experientia.

[81]  Thomas R. Clandinin,et al.  A Class of Visual Neurons with Wide-Field Properties Is Required for Local Motion Detection , 2015, Current Biology.

[82]  Paola Patella,et al.  Functional Maps of Mechanosensory Features in the Drosophila Brain , 2018, Current Biology.

[83]  Kuno Kirschfeld,et al.  The Resolution of Lens and Compound Eyes , 1976 .

[84]  Cellular and synaptic adaptations of neural circuits processing skylight polarization in the fly , 2019, Journal of Comparative Physiology A.

[85]  L. Luo,et al.  Leucine-Rich Repeat Transmembrane Proteins Instruct Discrete Dendrite Targeting in an Olfactory Map , 2009, Nature Neuroscience.

[86]  Alexander Borst,et al.  Visual Circuits for Direction Selectivity. , 2017, Annual review of neuroscience.