Mechanism-based tuning of a LOV domain photoreceptor.

[1]  B. Zoltowski,et al.  Illuminating solution responses of a LOV domain protein with photocoupled small-angle X-ray scattering. , 2009, Journal of molecular biology.

[2]  K. Gardner,et al.  A conserved glutamine plays a central role in LOV domain signal transmission and its duration. , 2008, Biochemistry.

[3]  K. Hellingwerf,et al.  Perturbation of the ground-state electronic structure of FMN by the conserved cysteine in phototropin LOV2 domains. , 2008, Physical chemistry chemical physics : PCCP.

[4]  M. Terazima,et al.  Stability of dimer and domain-domain interaction of Arabidopsis phototropin 1 LOV2. , 2008, Journal of molecular biology.

[5]  M. Nakasako,et al.  Structural basis of the LOV1 dimerization of Arabidopsis phototropins 1 and 2. , 2008, Journal of Molecular Biology.

[6]  K. Moffat,et al.  Light-activated DNA binding in a designed allosteric protein , 2008, Proceedings of the National Academy of Sciences.

[7]  Brian D Zoltowski,et al.  Light activation of the LOV protein vivid generates a rapidly exchanging dimer. , 2008, Biochemistry.

[8]  Z. Cao,et al.  A blue light inducible two-component signal transduction system in the plant pathogen Pseudomonas syringae pv. tomato. , 2008, Biophysical journal.

[9]  H. Kandori,et al.  Role of Phe1010 in light-induced structural changes of the neo1-LOV2 domain of Adiantum. , 2008, Biochemistry.

[10]  Dan Siegal-Gaskins,et al.  A photosensory two-component system regulates bacterial cell attachment , 2007, Proceedings of the National Academy of Sciences.

[11]  Andreas Möglich,et al.  Structural basis for light-dependent signaling in the dimeric LOV domain of the photosensor YtvA. , 2007, Journal of molecular biology.

[12]  Hiroshi Ishikita Influence of the Protein Environment on the Redox Potentials of Flavodoxins from Clostridium beijerinckii* , 2007, Journal of Biological Chemistry.

[13]  R. Bogomolni,et al.  Blue-Light-Activated Histidine Kinases: Two-Component Sensors in Bacteria , 2007, Science.

[14]  M. Sakurai,et al.  Heterogeneous environment of the S-H group of Cys966 near the flavin chromophore in the LOV2 domain of Adiantum neochrome1. , 2007, Biochemistry.

[15]  J. Christie,et al.  Steric interactions stabilize the signaling state of the LOV2 domain of phototropin 1. , 2007, Biochemistry.

[16]  Jennifer J. Loros,et al.  Conformational Switching in the Fungal Light Sensor Vivid , 2007, Science.

[17]  J. Christie Phototropin blue-light receptors. , 2007, Annual review of plant biology.

[18]  K. Hellingwerf,et al.  A base-catalyzed mechanism for dark state recovery in the Avena sativa phototropin-1 LOV2 domain. , 2007, Biochemistry.

[19]  I. Schlichting,et al.  Analysis of the Primary Photocycle Reactions Occurring in the Light, Oxygen, and Voltage Blue-Light Receptor by Multiconfigurational Quantum-Chemical Methods. , 2006, Journal of chemical theory and computation.

[20]  T. Todo,et al.  Photoreaction cycle of the light, oxygen, and voltage domain in FKF1 determined by low-temperature absorption spectroscopy. , 2006, Biochemistry.

[21]  M. Schmoll,et al.  Envoy, a PAS/LOV Domain Protein of Hypocrea jecorina (Anamorph Trichoderma reesei), Modulates Cellulase Gene Transcription in Response to Light , 2005, Eukaryotic Cell.

[22]  J. Dunlap,et al.  The PAS/LOV protein VIVID supports a rapidly dampened daytime oscillator that facilitates entrainment of the Neurospora circadian clock. , 2005, Genes & development.

[23]  Peter L. Freddolino,et al.  When light falls in LOV: a quantum mechanical/molecular mechanical study of photoexcitation in Phot-LOV1 of Chlamydomonas reinhardtii. , 2005, The journal of physical chemistry. B.

[24]  Hideki Kandori,et al.  Reactive cysteine is protonated in the triplet excited state of the LOV2 domain in Adiantum phytochrome3. , 2005, Journal of the American Chemical Society.

[25]  P. Hegemann,et al.  On the reaction mechanism of adduct formation in LOV domains of the plant blue-light receptor phototropin. , 2004, Journal of the American Chemical Society.

[26]  K. Moffat,et al.  The LOV2 domain of phototropin: a reversible photochromic switch. , 2004, Journal of the American Chemical Society.

[27]  K. Hasunuma,et al.  Reactive Oxygen Species Affect Photomorphogenesis in Neurospora crassa* , 2004, Journal of Biological Chemistry.

[28]  C. Schwerdtfeger,et al.  VIVID is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation , 2003, The EMBO journal.

[29]  A. Losi,et al.  Listening to the blue: the time-resolved thermodynamics of the bacterial blue-light receptor YtvA and its isolated LOV domain , 2003, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[30]  D. Nozaki,et al.  Light-induced structural changes in the LOV2 domain of Adiantum phytochrome3 studied by low-temperature FTIR and UV-visible spectroscopy. , 2003, Biochemistry.

[31]  P. Hegemann,et al.  Crystal structures and molecular mechanism of a light-induced signaling switch: The Phot-LOV1 domain from Chlamydomonas reinhardtii. , 2003, Biophysical journal.

[32]  K. Moffat,et al.  Primary reactions of the LOV2 domain of phototropin, a plant blue-light photoreceptor. , 2003, Biochemistry.

[33]  P. Hegemann,et al.  Phot-LOV1: photocycle of a blue-light receptor domain from the green alga Chlamydomonas reinhardtii. , 2003, Biophysical journal.

[34]  Keith Moffat,et al.  The LOV domain family: photoresponsive signaling modules coupled to diverse output domains. , 2003, Biochemistry.

[35]  R. Bogomolni,et al.  Intramolecular Proton Transfers and Structural Changes during the Photocycle of the LOV2 Domain of Phototropin 1* , 2003, The Journal of Biological Chemistry.

[36]  H. Kandori,et al.  Photoreaction of the cysteine S-H group in the LOV2 domain of Adiantum phytochrome3. , 2002, Journal of the American Chemical Society.

[37]  J. Dunlap,et al.  White Collar-1, a Circadian Blue Light Photoreceptor, Binding to the frequency Promoter , 2002, Science.

[38]  H. Fukuzawa,et al.  Photochemical Properties of the Flavin Mononucleotide-Binding Domains of the Phototropins from Arabidopsis, Rice, andChlamydomonas reinhardtii 1 , 2002, Plant Physiology.

[39]  Wolfgang Gärtner,et al.  First evidence for phototropin-related blue-light receptors in prokaryotes. , 2002, Biophysical journal.

[40]  Winslow R. Briggs,et al.  The Photocycle of a Flavin-binding Domain of the Blue Light Photoreceptor Phototropin* , 2001, The Journal of Biological Chemistry.

[41]  D. Bell-Pedersen,et al.  vvd is required for light adaptation of conidiation-specific genes of Neurospora crassa, but not circadian conidiation. , 2001, Fungal genetics and biology : FG & B.

[42]  J. Dunlap,et al.  The PAS Protein VIVID Defines a Clock-Associated Feedback Loop that Represses Light Input, Modulates Gating, and Regulates Clock Resetting , 2001, Cell.

[43]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[44]  L. Druhan,et al.  Role of methionine 56 in the control of the oxidation-reduction potentials of the Clostridium beijerinckii flavodoxin: effects of substitutions by aliphatic amino acids and evidence for a role of sulfur-flavin interactions. , 1998, Biochemistry.

[45]  J. Navaza,et al.  AMoRe: an automated package for molecular replacement , 1994 .

[46]  D. McRee,et al.  A visual protein crystallographic software system for X11/Xview , 1992 .

[47]  K. Yagi,et al.  Effect of hydrogen bonding on electronic spectra and reactivity of flavins. , 1980, Biochemistry.

[48]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[49]  R. Schowen,et al.  The proton inventory technique. , 1984, CRC critical reviews in biochemistry.