Linear-Time Recognition of Circular-Arc Graphs

Abstract A graph G is a circular-arc graph if it is the intersection graph of a set of arcs on a circle. That is, there is one arc for each vertex of G, and two vertices are adjacent in G if and only if the corresponding arcs intersect. We give a linear-time algorithm for recognizing this class of graphs. When G is a member of the class, the algorithm gives a certificate in the form of a set of arcs that realize it.

[1]  R. Möhring Algorithmic aspects of the substitution decomposition in optimization over relations, set systems and Boolean functions , 1985 .

[2]  Kellogg S. Booth PQ-tree algorithms. , 1975 .

[3]  A. Tucker,et al.  Matrix characterizations of circular-arc graphs , 1971 .

[4]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[5]  Jeremy P. Spinrad,et al.  Construction of probe interval models , 2002, SODA '02.

[6]  Jeremy P. Spinrad,et al.  Modular decomposition and transitive orientation , 1999, Discret. Math..

[7]  Ross M. McConnell,et al.  Linear-Time Recognition of Circular-Arc Graphs , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[8]  P. Gács,et al.  Algorithms , 1992 .

[9]  Jeremy P. Spinrad,et al.  Ordered Vertex Partitioning , 2000, Discret. Math. Theor. Comput. Sci..

[10]  Andrzej Ehrenfeucht,et al.  Theory of 2-Structures, Part II: Representation Through Labeled Tree Families , 1990, Theor. Comput. Sci..

[11]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[12]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[13]  Edward Szpilrajn-Marczewski Sur deux propriétés des classes d'ensembles , 1945 .

[14]  Alan C. Tucker,et al.  An Efficient Test for Circular-Arc Graphs , 1980, SIAM J. Comput..

[15]  Jeremy P. Spinrad,et al.  An O(n2 algorithm for circular-arc graph recognition , 1993, SODA '93.

[16]  Laurent Viennot,et al.  Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing , 2000, Theor. Comput. Sci..

[17]  Elaine Marie Eschen Circular-arc graph recognition and related problems , 1998 .

[18]  Jeremy P. Spinrad,et al.  A polynomial time recognition algorithm for probe interval graphs , 2001, SODA '01.

[19]  Jens Gustedt,et al.  Efficient and Practical Algorithms for Sequential Modular Decomposition , 2001, J. Algorithms.

[20]  T. Gallai Transitiv orientierbare Graphen , 1967 .

[21]  Tero Harju,et al.  Structure and organization , 2014 .

[22]  R. Möhring Algorithmic Aspects of Comparability Graphs and Interval Graphs , 1985 .

[23]  Jeremy P. Spinrad,et al.  Doubly Lexical Ordering of Dense 0 - 1 Matrices , 1993, Inf. Process. Lett..

[24]  S. Benzer ON THE TOPOLOGY OF THE GENETIC FINE STRUCTURE. , 1959, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Andrzej Ehrenfeucht,et al.  Theory of 2-Structures, Part I: Clans, Basic Subclasses, and Morphisms , 1990, Theor. Comput. Sci..

[26]  F. Roberts Graph Theory and Its Applications to Problems of Society , 1987 .

[27]  F. Radermacher,et al.  Substitution Decomposition for Discrete Structures and Connections with Combinatorial Optimization , 1984 .

[28]  Wen-Lian Hsu O(M*N) Algorithms for the Recognition and Isomorphism Problems on Circular-Arc Graphs , 1995, SIAM J. Comput..

[29]  D. R. Fulkerson,et al.  Incidence matrices and interval graphs , 1965 .