Kernel-PCA for face recognition in different color spaces

Different color spaces are better for different applications. This paper investigates the performance of face recognition with some color spaces using kernel-based Principal Component Analysis (Kernel-PCA). Kernel-PCA is a non-linear extension from the popular algorithm PCA. Experiments are performed with the Gaussian kernel function. Color spaces are linear or non-linear transform from RGB. In this paper, the RGB, YCbCr, and HSV color spaces are compared with the gray image (luminance information Y). Kernel-PCA is used to extract features from individual color components or from combining the three components of every color space in one vector. The experiments are performed on FEI color database. FEI database is frontal face images with seven profile images rotation of up to about 180 degrees and two different facial expression images. The experimental results show that the V color component of the HSV color space outperform all the used color organization.

[1]  Hanqing Lu,et al.  Kernel-based nonlinear discriminant analysis for face recognition , 2008, Journal of Computer Science and Technology.

[2]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[3]  Alex Pentland,et al.  View-based and modular eigenspaces for face recognition , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[4]  Mohamed F. Tolba,et al.  Visualization of large time-varying vector data , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[5]  Mohamed F. Tolba,et al.  High capacity image steganography using wavelet-based fusion , 2004, Proceedings. ISCC 2004. Ninth International Symposium on Computers And Communications (IEEE Cat. No.04TH8769).

[6]  Walter H. Buchsbaum,et al.  Color TV servicing , 1975 .

[7]  R.A. Ammar,et al.  Dynamic On-Line Allocation of Independent Task onto Heterogeneous Computing Systems to Maximize Load Balancing , 2008, 2008 IEEE International Symposium on Signal Processing and Information Technology.

[8]  Mohamed F. Tolba,et al.  Fundamental matrix estimation: A study of error criteria , 2017, Pattern Recognit. Lett..

[9]  Pawan Sinha,et al.  Role of color in face recognition , 2010 .

[10]  Chengjun Liu,et al.  Comparative assessment of content-based face image retrieval in different color spaces , 2005, Int. J. Pattern Recognit. Artif. Intell..

[11]  Stefan Winkler,et al.  Color Space Conversions , 2013 .

[12]  Jian Yang,et al.  Ieee Transactions on Image Processing 1 Tensor Discriminant Color Space for Face Recognition , 2022 .

[13]  Mohamed F. Tolba,et al.  Efficient Face-Based Non-Split Connectivity Compression for Quad and Triangle-Quad Meshes , 2008, GRAPP.

[14]  Mohamed F. Tolba,et al.  Large-Scale Vector Data Visualization using High Performance Computing , 2011, J. Softw..

[15]  Yanfeng Sun,et al.  Color face recognition based on 2DPCA , 2008, 2008 19th International Conference on Pattern Recognition.

[16]  M. S. Abdel-Wahab,et al.  Directed Acyclic Graphs Scheduling in Grid Computing Environments , 2004, International Conference on Internet Computing.

[17]  Chengjun Liu,et al.  Robust Face Recognition Using Color Information , 2009, ICB.

[18]  Mohamed F. Tolba,et al.  An enhanced edgebreaker compression algorithm for the connectivity of triangular meshes , 2007, GRAPP.

[19]  Simon Haykin,et al.  Neural Networks and Learning Machines , 2010 .

[20]  Alvy Ray Smith,et al.  Color gamut transform pairs , 1978, SIGGRAPH.

[21]  Alex Pentland,et al.  Eigenfaces for Face Recognition , 1991 .

[22]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[23]  Germán Castellanos-Domínguez,et al.  Comparison of the nearest feature classifiers for face recognition , 2006, Machine Vision and Applications.

[24]  Witold Pedrycz,et al.  Aggregation of classifiers based on image transformations in biometric face recognition , 2008, Machine Vision and Applications.

[25]  Luis Torres,et al.  The importance of the color information in face recognition , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).