Hypothetical glycerol pathways of newly isolated strains capable of 1,3-propanediol production.

Study presented here demonstrates the ability of three newly isolated strains, obtained from environmental probes (manure, bottom sediment, and food waste) and identified as Clostridium bifermentans, Clostridium butyricum, and Hafnia alvei, to synthesize 1,3-propanediol (1,3-PD), organic acids (such as lactic, acetic, fumaric, succinic, and butyric acids), and ethanol from glycerol. The production of 1,3-PD as well as the glycerol pathways in C. bifermentans and H. alvei cells have not been investigated and described yet by others. Moreover, there is no data in the available literature on the products of glycerol utilization by H. alvei and there is only some incoherent data (mainly from the first half of the twentieth century) about the ability of C. bifermentans to carry out glycerol degradation. Additionally, this study presents complete hypothetical glycerol pathways and the basic fermentation kinetic parameters (such as yield and productivity) for both strains as well as for the newly isolated C. butyricum strain.

[1]  A. Stams,et al.  1,3‐Propanediol production from glycerol by a newly isolated Trichococcus strain , 2012, Microbial biotechnology.

[2]  R. E. Buchanan,et al.  Bergey's Manual of Determinative Bacteriology. , 1975 .

[3]  W. Grajek,et al.  Beneficial and harmful roles of bacteria from the Clostridium genus. , 2013, Acta biochimica Polonica.

[4]  K. Vorlop,et al.  An improved screening method for microorganisms able to convert crude glycerol to 1,3-propanediol and to tolerate high product concentrations , 2011, Applied Microbiology and Biotechnology.

[5]  M. Bravo Bergey's Manual of Determinative Bacteriology , 1926, The Indian Medical Gazette.

[6]  Wolf-Dieter Deckwer,et al.  Fermentation of glycerol to 1,3-propanediol by Klebsiella and Citrobacter strains , 1990, Applied Microbiology and Biotechnology.

[7]  Klaus-Dieter Vorlop,et al.  High-level production of 1,3-propanediol from crude glycerol by Clostridium butyricum AKR102a , 2011, Applied Microbiology and Biotechnology.

[8]  Hongjuan Liu,et al.  Isolation and characterization of microorganisms able to produce 1,3-propanediol under aerobic conditions , 2008 .

[9]  S. T. Cowan Bergey's Manual of Determinative Bacteriology , 1948, Nature.

[10]  W. Grajek,et al.  Physiological predisposition of various Clostridium species to synthetize 1,3-propanediol from glycerol , 2012 .

[11]  A. Zeng,et al.  Fermentation of glycerol to 1,3-propanediol and 2,3-butanediol by Klebsiella pneumoniae , 1998, Applied Microbiology and Biotechnology.

[12]  R. Thauer,et al.  Function of reduced pyridine nucleotide-ferredoxin oxidoreductases in saccharolytic Clostridia. , 1973, Biochimica et biophysica acta.

[13]  K. V. Van Horn,et al.  Liver abscess caused by Clostridium bifermentans following blunt abdominal trauma , 1989, Journal of clinical microbiology.

[14]  M. E. Brooks,et al.  Taxonomic studies of the genus Clostridium: Clostrididum bifermentans and C. sordellii. , 1959, Journal of general microbiology.

[15]  Samir Kumar Khanal,et al.  Biological hydrogen production: effects of pH and intermediate products , 2003 .

[16]  Shangtian Yang,et al.  Extractive fermentation for butyric acid production from glucose by Clostridium tyrobutyricum. , 2003, Biotechnology and bioengineering.

[17]  D. Rossi,et al.  Bioconversion of residual glycerol from biodiesel synthesis into 1,3-propanediol and ethanol by isolated bacteria from environmental consortia , 2012 .

[18]  N. O. Sjolander Studies on Anaerobic Bacteria , 1937, Journal of bacteriology.

[19]  in chief George M. Garrity Bergey’s Manual® of Systematic Bacteriology , 1989, Springer New York.

[20]  W. Lubitz,et al.  Bioconversion of crude glycerol by fungi , 2012, Applied Microbiology and Biotechnology.

[21]  K. Lewis,et al.  Isolating "Uncultivable" Microorganisms in Pure Culture in a Simulated Natural Environment , 2002, Science.

[22]  A. Zeng,et al.  Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. , 2002, Advances in biochemical engineering/biotechnology.

[23]  G. Mead The amino acid-fermenting clostridia. , 1971, Journal of general microbiology.

[24]  S. Papanikolaou,et al.  High production of 1,3-propanediol from industrial glycerol by a newly isolated Clostridium butyricum strain. , 2000, Journal of biotechnology.

[25]  M. Dezfulian,et al.  Physiological characteristics ofClostridium bifermentans selectively isolated from California desert tortoise , 1994, Folia Microbiologica.

[26]  Hubert Bahl,et al.  Parameters Affecting Solvent Production by Clostridium pasteurianum , 1992, Applied and environmental microbiology.

[27]  E. Petitdemange,et al.  Fermentation of raw glycerol to 1,3-propanediol by new strains ofClostridium butyricum , 1995, Journal of Industrial Microbiology.

[28]  B. Chang,et al.  Producing hydrogen from wastewater sludge by Clostridium bifermentans. , 2003, Journal of biotechnology.

[29]  S. Elsden,et al.  Volatile acid production from threonine, valine, leucine and isoleucine by clostridia , 1978, Archives of Microbiology.

[30]  A. Zeng,et al.  Tools and Applications of Biochemical Engineering Science , 2010 .

[31]  G. Garrity Bergey’s Manual® of Systematic Bacteriology , 2012, Springer New York.

[32]  Richard Sparling,et al.  Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates , 2006 .

[33]  D. T. Jones,et al.  Acetone-butanol fermentation revisited. , 1986, Microbiological reviews.

[34]  D. Drucker,et al.  Effect of glucose concentration in the growth medium upon neutral and acidic fermentation end-products of Clostridium bifermentans, Clostridium sporogenes and peptostreptococcus anaerobius. , 1983, Journal of medical microbiology.

[35]  K. Myszka,et al.  Isolation process of industrially useful Clostridium bifermentans from natural samples. , 2012, Journal of bioscience and bioengineering.

[36]  D. Schauer,et al.  The Genus Hafnia , 2006 .

[37]  Siu Man Chan,et al.  Complete genome analysis of the mandarin fish infectious spleen and kidney necrosis iridovirus. , 2001, Virology.

[38]  S. Elsden,et al.  The end products of the metabolism of aromatic amino acids by clostridia , 1976, Archives of Microbiology.

[39]  V. Rangaswamy,et al.  1,3-Propanediol production from crude glycerol from Jatropha biodiesel process. , 2011, New biotechnology.

[40]  Wolf-Dieter Deckwer,et al.  Glycerol conversion to 1,3-propanediol by newly isolated clostridia , 1992, Applied Microbiology and Biotechnology.

[41]  H. Biebl,et al.  Taxonomy of the glycerol fermenting clostridia and description of Clostridium diolis sp. nov. , 2002, Systematic and applied microbiology.

[42]  Eunsoo Hong,et al.  Isolation of microorganisms able to produce 1,3-propanediol and optimization of medium constituents for Klebsiella pneumoniae AJ4 , 2013, Bioprocess and Biosystems Engineering.

[43]  André Bories,et al.  Nutrient requirements for glycerol conversion to 1,3-propanediol by Clostridium butyricum , 1999 .

[44]  P. Methacanon,et al.  Statistical optimization for simultaneous production of 1,3-propanediol and 2,3-butanediol using crude glycerol by newly bacterial isolate , 2011 .