Metric wave approach to flexoelectricity within density functional perturbation theory

Within the framework of density functional perturbation theory (DFPT), we implement and test a novel "metric wave" response-function approach. It consists in the reformulation of an acoustic phonon perturbation in the curvilinear frame that is comoving with the atoms. This means that all the perturbation effects are encoded in the first-order variation of the real-space metric, while the atomic positions remain fixed. This approach can be regarded as the generalization of the uniform strain perturbation of Hamann et al. [D. R. Hamann, X. Wu, K. M. Rabe, and D. Vanderbilt, Phys. Rev. B 71, 035117 (2005)] to the case of inhomogeneous deformations, and greatly facilitates the calculation of advanced electromechanical couplings such as the flexoelectric tensor. We demonstrate the accuracy of our approach with extensive tests on model systems and on bulk crystals of Si and SrTiO$_3$.

[1]  D. Vanderbilt,et al.  Quantum theory of mechanical deformations , 2018, Physical Review B.

[2]  M. Stengel Microscopic response to inhomogeneous deformations in curvilinear coordinates , 2013, Nature Communications.

[3]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[4]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[5]  M. Scheffler,et al.  Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory , 1998, cond-mat/9807418.

[6]  A. Tagantsev,et al.  Piezoelectricity and flexoelectricity in crystalline dielectrics. , 1986, Physical review. B, Condensed matter.

[7]  Xavier Gonze,et al.  First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm , 1997 .

[8]  L. Eric Cross,et al.  Flexoelectric effects: Charge separation in insulating solids subjected to elastic strain gradients , 2006 .

[9]  M. Stengel Surface control of flexoelectricity , 2014, 1402.2121.

[10]  M. Stengel Unified ab initio formulation of flexoelectricity and strain-gradient elasticity , 2016, 1604.08126.

[11]  J. Scott,et al.  Strain-gradient-induced polarization in SrTiO3 single crystals. , 2007, Physical review letters.

[12]  A. S. Yurkov,et al.  Flexoelectric effect in finite samples , 2011, 1110.0380.

[13]  Leonard Kleinman,et al.  Efficacious Form for Model Pseudopotentials , 1982 .

[14]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[15]  E. Burstein,et al.  ACOUSTICAL ACTIVITY AND OTHER FIRST ORDER SPATIAL DISPERSION EFFECTS IN CRYSTALS. , 1968 .

[16]  J. J. Sakurai,et al.  Modern Quantum Mechanics , 1986 .

[17]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[18]  S G Louie,et al.  Coupling of nonlocal potentials to electromagnetic fields. , 2001, Physical review letters.

[19]  P. V. Yudin,et al.  Flexoelectricity in Solids:From Theory to Applications , 2016 .

[20]  David Vanderbilt,et al.  Current-density implementation for calculating flexoelectric coefficients , 2018, Physical Review B.

[21]  Astronomy,et al.  Metric tensor formulation of strain in density-functional perturbation theory , 2004, cond-mat/0409269.

[22]  D. Vanderbilt,et al.  First-principles theory and calculation of flexoelectricity , 2013, 1307.0132.

[23]  Joel E. Moore,et al.  Orbital magnetoelectric coupling in band insulators , 2010, 1002.0290.

[24]  Umesh Kumar Bhaskar,et al.  A flexoelectric microelectromechanical system on silicon. , 2016, Nature nanotechnology.

[25]  Xavier Gonze,et al.  Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory , 1997 .

[26]  J. Narváez,et al.  Enhanced flexoelectric-like response in oxide semiconductors , 2016, Nature.

[27]  M. Stengel Flexoelectricity from density-functional perturbation theory , 2013, 1306.4240.

[28]  Tahir Cagin,et al.  Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect , 2008 .

[29]  A. Gruverman,et al.  Supplementary Materials for Mechanical Writing of Ferroelectric Polarization , 2012 .

[30]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.