Towards nanowire-based terahertz quantum cascade lasers: prospects and technological challenges

We present recent work towards the realization of a nanowire-based terahertz quantum cascade laser. Nanowires offer an additional quantum mechanical confinement of electrons in the plane of a two-dimensional quantum cascade structure. The additional quantization can greatly increase the lifetimes of intersubband transitions and therefore increase the optical gain and also the maximum operating temperature of terahertz quantum cascade lasers. We outline a fabrication process that is fully scalable from nanowire to micropillar devices and present measurements of micropillar arrays in a double metal waveguide. The results are very promising and also show the main technological challenges for realizing nanowire-based devices.

[1]  A. E. Wetsel,et al.  Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure. , 1988, Physical review letters.

[2]  Peidong Yang,et al.  Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires , 2002 .

[3]  Werner Schrenk,et al.  Quantum cascade laser utilising aluminium-free material system: InGaAs/GaAsSb lattice-matched to InP , 2009 .

[4]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[5]  Sahand Hormoz,et al.  Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K. , 2008, Optics express.

[6]  Alexander Podzorov,et al.  Low-loss polymers for terahertz applications. , 2008, Applied optics.

[7]  M. Brandstetter,et al.  High performance InGaAs/GaAsSb terahertz quantum cascade lasers operating up to 142 K , 2012 .

[8]  J. Faist,et al.  Design and fabrication technology for high performance electrical pumped terahertz photonic crystal band edge lasers with complete photonic band gap , 2010 .

[9]  Didier Lippens,et al.  Terahertz time-domain spectroscopy of films fabricated from SU-8 , 1999 .

[10]  P. Vogl,et al.  Terahertz quantum cascade lasers based on type II InGaAs/GaAsSb/InP , 2010 .

[11]  M. S. Skolnick,et al.  Long lifetimes of quantum-dot intersublevel transitions in the terahertz range. , 2009, Nature materials.

[12]  K. M. Chung,et al.  Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling. , 2012, Optics express.

[13]  D. Botez,et al.  Passivation of Interfacial States for GaAs- and InGaAs/InP-Based Regrown Nanostructures , 2009 .

[14]  Qing Hu,et al.  Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K , 2009 .

[15]  X. Zhang,et al.  Terahertz metamaterials on free-standing highly-flexible polyimide substrates , 2008, 0808.0454.

[16]  N. Zerounian,et al.  Complex permittivity characterization of benzocyclobutene for terahertz applications , 2008 .

[17]  Lars Samuelson,et al.  One-dimensional heterostructures in semiconductor nanowhiskers , 2002 .

[18]  E. Linfield,et al.  Terahertz semiconductor-heterostructure laser , 2002, Nature.

[19]  D. Botez,et al.  Intersubband quantum-box semiconductor lasers , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[20]  P. Klang,et al.  Intersubband optoelectronics in the InGaAs/GaAsSb material system , 2010 .