Out-of-plane carrier spin in transition-metal dichalcogenides under electric current

Significance Although out-of-plane current-induced spin polarization (CISP) is important for perpendicular-magnetization reorientation, and it has been realized by the crystalline symmetry breaking, its material examples are relatively fewer compared with in-plane CISP in Rashba systems. With the help of intrinsic spin–orbit coupling, an intriguing out-of-plane CISP is designed in transition-metal dichalcogenides by the symmetry breaking in the spin space, which provides opportunities for out-of-plane magnetization rotation and electric control of valley splitting. Moreover, the spin polarization is associated with valley-dependent responses to electric current and adds a dimension, valley degree of freedom, to the study of CISP. The symmetry argument and non-Rashba effective model also helps to illuminate these physics and broaden the scope of the CISP. Absence of spatial inversion symmetry allows a nonequilibrium spin polarization to be induced by electric currents, which, in two-dimensional systems, is conventionally analyzed using the Rashba model, leading to in-plane spin polarization. Given that the material realizations of out-of-plane current-induced spin polarization (CISP) are relatively fewer than that of in-plane CISP, but important for perpendicular-magnetization switching and electronic structure evolution, it is highly desirable to search for new prototypical materials and mechanisms to generate the out-of-plane carrier spin and promote the study of CISP. Here, we propose that an out-of-plane CISP can emerge in ferromagnetic transition-metal dichalcogenide monolayers. Taking monolayer VSe2 and VTe2 as examples, we calculate the out-of-plane CISP based on linear-response theory and first-principles methods. We deduce a general low-energy model for easy-plane ferromagnetic transition-metal dichalcogenide monolayers and find that the out-of-plane CISP is due to an in-plane magnetization together with intrinsic spin–orbit coupling inducing an anisotropic out-of-plane spin splitting in the momentum space. The CISP paves the way for magnetization rotation and electric control of the valley quantum number.

[1]  Ismail El Baggari,et al.  Layer-dependent spin-orbit torques generated by the centrosymmetric transition metal dichalcogenide β−MoTe2 , 2019, Physical Review B.

[2]  D. Ralph,et al.  Current-Induced Torques with Dresselhaus Symmetry Due to Resistance Anisotropy in 2D Materials. , 2019, ACS nano.

[3]  Raja Das,et al.  Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates , 2018, Nature Nanotechnology.

[4]  D. Ralph,et al.  Spin-Orbit Torques in NbSe2/Permalloy Bilayers. , 2018, Nano letters.

[5]  D. Ralph,et al.  Thickness dependence of spin-orbit torques generated by WTe2 , 2017, 1707.03757.

[6]  R. Raimondi,et al.  Optimal Charge-to-Spin Conversion in Graphene on Transition-Metal Dichalcogenides. , 2017, Physical review letters.

[7]  Q. Niu,et al.  Rashba torque beyond the Boltzmann regime , 2017, 1706.00049.

[8]  Hong Zhou,et al.  Steep-slope hysteresis-free negative capacitance MoS2 transistors , 2017, Nature Nanotechnology.

[9]  Ming-Yang Li,et al.  Strong Rashba-Edelstein Effect-Induced Spin-Orbit Torques in Monolayer Transition Metal Dichalcogenide/Ferromagnet Bilayers. , 2016, Nano letters.

[10]  H. Jeng,et al.  Newtype single-layer magnetic semiconductor in transition-metal dichalcogenides VX2 (X = S, Se and Te) , 2016, Scientific Reports.

[11]  J. Qi,et al.  Valley splitting in the transition-metal dichalcogenide monolayer via atom adsorption. , 2016, Nanoscale.

[12]  J. Fabian,et al.  Magnetotransport signatures of the proximity exchange and spin-orbit couplings in graphene , 2016, 1608.03879.

[13]  Wenwen Zhao,et al.  Colloidal synthesis of VSe2 single-layer nanosheets as novel electrocatalysts for the hydrogen evolution reaction. , 2016, Chemical communications.

[14]  D. Ralph,et al.  Control of spin–orbit torques through crystal symmetry in WTe2/ferromagnet bilayers , 2016, Nature Physics.

[15]  Je-Guen Park Opportunities and challenges of 2D magnetic van der Waals materials: magnetic graphene? , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[16]  F. Freimuth,et al.  Spin-orbit torques in locally and globally noncentrosymmetric crystals: Antiferromagnets and ferromagnets , 2016, 1604.07590.

[17]  J. Velev,et al.  Intrinsic spin orbit torque in a single domain nanomagnet , 2016, 1604.07885.

[18]  X. Wan,et al.  Concepts of ferrovalley material and anomalous valley Hall effect , 2016, Nature Communications.

[19]  Georgios A. Tritsaris,et al.  Ab initio tight-binding Hamiltonian for transition metal dichalcogenides , 2015, 1506.08860.

[20]  J. Qi,et al.  Giant and tunable valley degeneracy splitting in MoTe2 , 2015, 1504.04434.

[21]  D. Sellmyer,et al.  Magnetism of Ta dichalcogenide monolayers tuned by strain and hydrogenation , 2015, 1504.04602.

[22]  M. Calandra,et al.  First-principles theory of field-effect doping in transition-metal dichalcogenides: Structural properties, electronic structure, Hall coefficient, and electrical conductivity , 2015, 1501.07223.

[23]  Wanlin Guo,et al.  Tensile strain induced switching of magnetic states in NbSe2 and NbS2 single layers. , 2014, Nanoscale.

[24]  J. Sinova,et al.  Relativistic Néel-order fields induced by electrical current in antiferromagnets. , 2014, Physical review letters.

[25]  S. Louie,et al.  Tunable Magnetism and Half-Metallicity in Hole-Doped Monolayer GaSe. , 2014, Physical review letters.

[26]  Fengyu Li,et al.  Versatile Electronic Properties of VSe2 Bulk, Few-Layers, Monolayer, Nanoribbons, and Nanotubes: A Computational Exploration , 2014 .

[27]  L. Golub,et al.  Interplay of Rashba/Dresselhaus spin splittings probed by photogalvanic spectroscopy –A review , 2014 .

[28]  Y. J. Zhang,et al.  Electrically Switchable Chiral Light-Emitting Transistor , 2014, Science.

[29]  J. Sinova,et al.  An antidamping spin-orbit torque originating from the Berry curvature. , 2014, Nature nanotechnology.

[30]  J. Lado,et al.  Magnetic edge anisotropy in graphenelike honeycomb crystals. , 2014, Physical review letters.

[31]  Ji Feng,et al.  Emergent topological and half semimetallic Dirac Fermions at oxide interfaces , 2013, 1310.2471.

[32]  Yugui Yao,et al.  Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides , 2013, 1305.6089.

[33]  M. D. Stiles,et al.  Angular dependence of spin-orbit spin-transfer torques , 2013, 1409.5600.

[34]  A. Kis,et al.  Breakdown of high-performance monolayer MoS2 transistors. , 2012, ACS nano.

[35]  Ji Feng,et al.  Valley-selective circular dichroism of monolayer molybdenum disulphide , 2012, Nature Communications.

[36]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[37]  Yingchun Cheng,et al.  Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors , 2011 .

[38]  I. Miron,et al.  Current-induced spin–orbit torques , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[39]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[40]  N. Marzari,et al.  wannier90: A tool for obtaining maximally-localised Wannier functions , 2007, Comput. Phys. Commun..

[41]  O. Vafek,et al.  Piezo-magnetoelectric effects in p -doped semiconductors , 2004, cond-mat/0408476.

[42]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[43]  N. Marzari,et al.  Maximally localized generalized Wannier functions for composite energy bands , 1997, cond-mat/9707145.

[44]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[45]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[46]  V. A. Khablo,et al.  Nuclear electric resonance and orientation of carrier spins by an electric field , 1989 .

[47]  E. L. Ivchenko,et al.  Photocurrent in structures with quantum wells with an optical orientation of free carriers , 1989 .

[48]  E. Ivchenko,et al.  New photogalvanic effect in gyrotropic crystals , 1978 .

[49]  Arash A. Mostofi,et al.  A ug 2 00 7 wannier 90 : A Tool for Obtaining Maximally-Localised Wannier Functions , 2007 .

[50]  Neil Genzlinger A. and Q , 2006 .

[51]  V. M. Edelstein Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems , 1990 .

[52]  J. Lynch,et al.  Lymph node topology dictates T cell migration behavior , 2007, The Journal of experimental medicine.