Benchmarking in Optimization: Best Practice and Open Issues

This survey compiles ideas and recommendations from more than a dozen researchers with different backgrounds and from different institutes around the world. Promoting best practice in benchmarking is its main goal. The article discusses eight essential topics in benchmarking: clearly stated goals, well-specified problems, suitable algorithms, adequate performance measures, thoughtful analysis, effective and efficient designs, comprehensible presentations, and guaranteed reproducibility. The final goal is to provide well-accepted guidelines (rules) that might be useful for authors and reviewers. As benchmarking in optimization is an active and evolving field of research this manuscript is meant to co-evolve over time by means of periodic updates.

[1]  Ranjit K. Roy,et al.  Design of Experiments Using The Taguchi Approach: 16 Steps to Product and Process Improvement , 2001 .

[2]  Thomas Bartz-Beielstein,et al.  Experimental Methods for the Analysis of Optimization Algorithms , 2010 .

[3]  Markus Wagner,et al.  Better software analytics via “DUO”: Data mining algorithms using/used-by optimizers , 2020, Empirical Software Engineering.

[4]  Matthias Müller-Hannemann,et al.  Algorithm Engineering: Bridging the Gap between Algorithm Theory and Practice [outcome of a Dagstuhl Seminar] , 2010, Algorithm Engineering.

[5]  Heike Trautmann,et al.  A multi-objective perspective on performance assessment and automated selection of single-objective optimization algorithms , 2020, Appl. Soft Comput..

[6]  Thomas Bartz-Beielstein,et al.  Improving the reliability of test functions generators , 2020, Appl. Soft Comput..

[7]  Stuart A. Kauffman,et al.  The origins of order , 1993 .

[8]  Markus Wagner,et al.  Evolutionary many-objective optimization: A quick-start guide , 2015 .

[9]  L. Darrell Whitley,et al.  Evaluating Evolutionary Algorithms , 1996, Artif. Intell..

[10]  Thomas Bartz-Beielstein,et al.  Model-based methods for continuous and discrete global optimization , 2017, Appl. Soft Comput..

[11]  Kevin Leyton-Brown,et al.  Sequential Model-Based Optimization for General Algorithm Configuration , 2011, LION.

[12]  Yuri Malitsky,et al.  Model-Based Genetic Algorithms for Algorithm Configuration , 2015, IJCAI.

[13]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[14]  David S. Johnson,et al.  A theoretician's guide to the experimental analysis of algorithms , 1999, Data Structures, Near Neighbor Searches, and Methodology.

[15]  Thomas J. Santner,et al.  Design and analysis of computer experiments , 1998 .

[16]  Jürgen Branke,et al.  Evolutionary optimization in uncertain environments-a survey , 2005, IEEE Transactions on Evolutionary Computation.

[17]  Zbigniew Michalewicz,et al.  Benchmarking Optimization Algorithms: An Open Source Framework for the Traveling Salesman Problem , 2014, IEEE Computational Intelligence Magazine.

[18]  S. Shapiro,et al.  An Analysis of Variance Test for Normality (Complete Samples) , 1965 .

[19]  Heike Trautmann,et al.  Parameterization of state-of-the-art performance indicators: a robustness study based on inexact TSP solvers , 2018, GECCO.

[20]  Daan van den Berg,et al.  Fireworks Algorithm versus Plant Propagation Algorithm , 2019, IJCCI.

[21]  Maliha S. Nash,et al.  Handbook of Parametric and Nonparametric Statistical Procedures , 2001, Technometrics.

[22]  Benjamín Barán,et al.  Performance metrics in multi-objective optimization , 2015, 2015 Latin American Computing Conference (CLEI).

[23]  Manuela Herman,et al.  Design Of Experiments Using The Taguchi Approach 16 Steps To Product And Process Improvement , 2016 .

[24]  K. Popper Objective Knowledge: An Evolutionary Approach , 1972 .

[25]  Heike Trautmann,et al.  Benchmarking Evolutionary Algorithms: Towards Exploratory Landscape Analysis , 2010, PPSN.

[26]  Xin Yao,et al.  Dynamic Multi-objective Optimization: A Survey of the State-of-the-Art , 2013 .

[27]  Sébastien Vérel,et al.  Dominance, epsilon, and hypervolume local optimal sets in multi-objective optimization, and how to tell the difference , 2018, GECCO.

[28]  Anne Auger,et al.  COCO: a platform for comparing continuous optimizers in a black-box setting , 2016, Optim. Methods Softw..

[29]  Mark Hoogendoorn,et al.  Parameter Control in Evolutionary Algorithms: Trends and Challenges , 2015, IEEE Transactions on Evolutionary Computation.

[30]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[31]  Zbigniew Michalewicz,et al.  A comprehensive benchmark set and heuristics for the traveling thief problem , 2014, GECCO.

[32]  Hans-Paul Schwefel,et al.  Evolution strategies – A comprehensive introduction , 2002, Natural Computing.

[33]  Andries Petrus Engelbrecht,et al.  A survey of techniques for characterising fitness landscapes and some possible ways forward , 2013, Inf. Sci..

[34]  Dimo Brockhoff,et al.  Mixed-integer benchmark problems for single- and bi-objective optimization , 2019, GECCO.

[35]  Thomas Bartz-Beielstein,et al.  Experimental Research in Evolutionary Computation - The New Experimentalism , 2010, Natural Computing Series.

[36]  El-Ghazali Talbi,et al.  Metaheuristics - From Design to Implementation , 2009 .

[37]  Talal Rahwan,et al.  Using the Shapley Value to Analyze Algorithm Portfolios , 2016, AAAI.

[38]  F. Pesarin Multivariate Permutation Tests : With Applications in Biostatistics , 2001 .

[39]  Panos M. Pardalos,et al.  No Free Lunch Theorem: A Review , 2019, Approximation and Optimization.

[40]  Marjan Mernik,et al.  A chess rating system for evolutionary algorithms: A new method for the comparison and ranking of evolutionary algorithms , 2014, Inf. Sci..

[41]  Mathijs de Weerdt,et al.  Black-box Mixed-Variable Optimisation using a Surrogate Model that Satisfies Integer Constraints , 2020, ArXiv.

[42]  M. Preuss,et al.  Search Dynamics on Multimodal Multiobjective Problems , 2019, Evolutionary Computation.

[43]  D. Mayo,et al.  Severe Testing as a Basic Concept in a Neyman–Pearson Philosophy of Induction , 2006, The British Journal for the Philosophy of Science.

[44]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[45]  Olivier Teytaud,et al.  Critical Hyper-Parameters: No Random, No Cry , 2017, ArXiv.

[46]  Thomas Stützle,et al.  Ant colony optimization: artificial ants as a computational intelligence technique , 2006 .

[47]  Kevin Leyton-Brown,et al.  SATzilla: Portfolio-based Algorithm Selection for SAT , 2008, J. Artif. Intell. Res..

[48]  Heike Trautmann,et al.  Automated Algorithm Selection on Continuous Black-Box Problems by Combining Exploratory Landscape Analysis and Machine Learning , 2017, Evolutionary Computation.

[49]  Elizabeth F. Wanner,et al.  A Multicriteria Statistical Based Comparison Methodology for Evaluating Evolutionary Algorithms , 2011, IEEE Transactions on Evolutionary Computation.

[50]  Hisao Ishibuchi,et al.  An easy-to-use real-world multi-objective optimization problem suite , 2020, Appl. Soft Comput..

[51]  Heike Trautmann,et al.  Anytime Behavior of Inexact TSP Solvers and Perspectives for Automated Algorithm Selection , 2020, 2020 IEEE Congress on Evolutionary Computation (CEC).

[52]  Dirk Thierens,et al.  The balance between proximity and diversity in multiobjective evolutionary algorithms , 2003, IEEE Trans. Evol. Comput..

[53]  Jürgen Branke,et al.  Evolutionary Optimization in Dynamic Environments , 2001, Genetic Algorithms and Evolutionary Computation.

[54]  Tome Eftimov,et al.  Understanding the problem space in single-objective numerical optimization using exploratory landscape analysis , 2020, Appl. Soft Comput..

[55]  Mark S. Boddy,et al.  An Analysis of Time-Dependent Planning , 1988, AAAI.

[56]  Philip J. Fleming,et al.  How not to lie with statistics: the correct way to summarize benchmark results , 1986, CACM.

[57]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[58]  Zbigniew Michalewicz,et al.  The travelling thief problem: The first step in the transition from theoretical problems to realistic problems , 2013, 2013 IEEE Congress on Evolutionary Computation.

[59]  K. Steiglitz,et al.  Adaptive step size random search , 1968 .

[60]  H. Levene Robust tests for equality of variances , 1961 .

[61]  Hao Wang,et al.  IOHprofiler: A Benchmarking and Profiling Tool for Iterative Optimization Heuristics , 2018, ArXiv.

[62]  Thomas Bäck,et al.  Mixed-Integer NK Landscapes , 2006, PPSN.

[63]  Raphael T. Haftka,et al.  Requirements for papers focusing on new or improved global optimization algorithms , 2016 .

[64]  Thomas Bäck,et al.  IOHanalyzer: Performance Analysis for Iterative Optimization Heuristic , 2020, ArXiv.

[65]  John N. Hooker,et al.  Testing heuristics: We have it all wrong , 1995, J. Heuristics.

[66]  Thomas Bartz-Beielstein,et al.  Sequential parameter optimization , 2005, 2005 IEEE Congress on Evolutionary Computation.

[67]  Markus Wagner,et al.  Evolutionary diversity optimization using multi-objective indicators , 2018, GECCO.

[68]  H. H. Rosenbrock,et al.  An Automatic Method for Finding the Greatest or Least Value of a Function , 1960, Comput. J..

[69]  R. Swinburne OBJECTIVE KNOWLEDGE: AN EVOLUTIONARY APPROACH , 1973 .

[70]  Jason H. Moore,et al.  Where are we now?: a large benchmark study of recent symbolic regression methods , 2018, GECCO.

[71]  Thomas Bartz-Beielstein,et al.  Design and Analysis of Optimization Algorithms Using Computational Statistics , 2004 .

[72]  R. Plackett,et al.  THE DESIGN OF OPTIMUM MULTIFACTORIAL EXPERIMENTS , 1946 .

[73]  Lars Kotthoff,et al.  Automated Machine Learning: Methods, Systems, Challenges , 2019, The Springer Series on Challenges in Machine Learning.

[74]  F. Pillichshammer,et al.  Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .

[75]  Zbigniew Michalewicz,et al.  Evolutionary computation for multicomponent problems: opportunities and future directions , 2016, Optimization in Industry.

[76]  Tome Eftimov,et al.  A Novel Approach to statistical comparison of meta-heuristic stochastic optimization algorithms using deep statistics , 2017, Inf. Sci..

[77]  Bernd Bischl,et al.  ASlib: A benchmark library for algorithm selection , 2015, Artif. Intell..

[78]  Olivier Teytaud,et al.  Noisy Optimization: Fast Convergence Rates with Comparison-Based Algorithms , 2016, GECCO.

[79]  Frank Neumann,et al.  Bioinspired computation in combinatorial optimization: algorithms and their computational complexity , 2010, GECCO '12.

[80]  Bernd Bischl,et al.  Exploratory landscape analysis , 2011, GECCO '11.

[81]  Gerhard W. Dueck,et al.  Threshold accepting: a general purpose optimization algorithm appearing superior to simulated anneal , 1990 .

[82]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[83]  Tome Eftimov,et al.  DSCTool: A web-service-based framework for statistical comparison of stochastic optimization algorithms , 2020, Appl. Soft Comput..

[84]  Francisco Herrera,et al.  A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization , 2009, J. Heuristics.

[85]  W. Kruskal,et al.  Use of Ranks in One-Criterion Variance Analysis , 1952 .

[86]  Ehl Emile Aarts,et al.  Simulated annealing and Boltzmann machines , 2003 .

[87]  Francisco Herrera,et al.  Analyzing convergence performance of evolutionary algorithms: A statistical approach , 2014, Inf. Sci..

[88]  Shlomo Zilberstein,et al.  Using Anytime Algorithms in Intelligent Systems , 1996, AI Mag..

[89]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[90]  Petros Koumoutsakos,et al.  Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.

[91]  Patrick M. Reed,et al.  Diagnostic Assessment of Search Controls and Failure Modes in Many-Objective Evolutionary Optimization , 2012, Evolutionary Computation.

[92]  L. Huson,et al.  Multivariate Permutation Tests: with Applications in Biostatistics , 2003 .

[93]  Toby Walsh,et al.  How Not To Do It , 1995 .

[94]  K. Price Differential evolution vs. the functions of the 2/sup nd/ ICEO , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[95]  Warren Hare,et al.  Best practices for comparing optimization algorithms , 2017, Optimization and Engineering.

[96]  Thomas Stützle,et al.  A Racing Algorithm for Configuring Metaheuristics , 2002, GECCO.

[97]  Marcus Gallagher,et al.  Towards improved benchmarking of black-box optimization algorithms using clustering problems , 2016, Soft Comput..

[98]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[99]  Jean-Paul Watson,et al.  Testing, Evaluation and Performance of Optimization and Learning Systems , 2002 .

[100]  Jorge J. Moré,et al.  Testing Unconstrained Optimization Software , 1981, TOMS.

[101]  Kate Smith-Miles,et al.  Generating new test instances by evolving in instance space , 2015, Comput. Oper. Res..

[102]  Stephan Mertens,et al.  Low autocorrelation binary sequences , 2015, 1512.02475.

[103]  Margaret J. Robertson,et al.  Design and Analysis of Experiments , 2006, Handbook of statistics.

[104]  Anne Auger,et al.  Using Well-Understood Single-Objective Functions in Multiobjective Black-Box Optimization Test Suites , 2019, Evolutionary Computation.

[105]  Tome Eftimov,et al.  Identifying practical significance through statistical comparison of meta-heuristic stochastic optimization algorithms , 2019, Appl. Soft Comput..

[106]  Daan van den Berg,et al.  Parameter Sensitivity Patterns in the Plant Propagation Algorithm , 2020, IJCCI.

[107]  Thomas Stützle,et al.  Classification of Metaheuristics and Design of Experiments for the Analysis of Components , 2001 .

[108]  Thomas Stützle,et al.  Ant Colony Optimization for Mixed-Variable Optimization Problems , 2014, IEEE Transactions on Evolutionary Computation.

[109]  Thomas Bartz-Beielstein,et al.  In a Nutshell: Sequential Parameter Optimization , 2017, ArXiv.

[110]  Heder S. Bernardino,et al.  A benchmark suite for designing combinational logic circuits via metaheuristics , 2020, Appl. Soft Comput..

[111]  O. Teytaud,et al.  Fully Parallel Hyperparameter Search: Reshaped Space-Filling , 2020, ICML.

[112]  Brian A. Nosek,et al.  The preregistration revolution , 2018, Proceedings of the National Academy of Sciences.

[113]  Stefan M. Wild,et al.  Benchmarking Derivative-Free Optimization Algorithms , 2009, SIAM J. Optim..

[114]  Francisco J. Rodríguez,et al.  Arbitrary function optimisation with metaheuristics , 2012, Soft Comput..

[115]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring and Number Partitioning , 1991, Oper. Res..

[116]  Wei Chen,et al.  Paradoxes in Numerical Comparison of Optimization Algorithms , 2020, IEEE Transactions on Evolutionary Computation.

[117]  Michael Jackson,et al.  Optimal Design of Experiments , 1994 .

[118]  Markus Wagner,et al.  On the Effectiveness of Simple Success-Based Parameter Selection Mechanisms for Two Classical Discrete Black-Box Optimization Benchmark Problems , 2018, ArXiv.

[119]  Randal S. Olson,et al.  TPOT: A Tree-based Pipeline Optimization Tool for Automating Machine Learning , 2016, AutoML@ICML.

[120]  Pascal Kerschke,et al.  Comprehensive Feature-Based Landscape Analysis of Continuous and Constrained Optimization Problems Using the R-Package Flacco , 2017, Studies in Classification, Data Analysis, and Knowledge Organization.

[121]  David D. Cox,et al.  Hyperopt: A Python Library for Optimizing the Hyperparameters of Machine Learning Algorithms , 2013, SciPy.

[122]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[123]  Thomas Reinartz,et al.  CRISP-DM 1.0: Step-by-step data mining guide , 2000 .

[124]  M. Friedman The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance , 1937 .

[125]  Ofer M. Shir,et al.  Compiling a benchmarking test-suite for combinatorial black-box optimization: a position paper , 2018, GECCO.

[126]  Koji Tsuda,et al.  COMBO: An efficient Bayesian optimization library for materials science , 2016 .

[127]  Shengxiang Yang,et al.  Evolutionary dynamic optimization: A survey of the state of the art , 2012, Swarm Evol. Comput..

[128]  Jürgen Branke,et al.  Efficient search for robust solutions by means of evolutionary algorithms and fitness approximation , 2006, IEEE Transactions on Evolutionary Computation.

[129]  Thomas Bäck,et al.  Theory of Evolutionary Computation: Recent Developments in Discrete Optimization , 2020, Theory of Evolutionary Computation.

[130]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[131]  Xin Yao,et al.  Many-Objective Evolutionary Algorithms , 2015, ACM Comput. Surv..

[132]  Randal S. Olson,et al.  PMLB: a large benchmark suite for machine learning evaluation and comparison , 2017, BioData Mining.

[133]  Jack P. C. Kleijnen Design and Analysis of Simulation Experiments , 2007 .

[134]  Bernd Bischl,et al.  A novel feature-based approach to characterize algorithm performance for the traveling salesperson problem , 2012, Annals of Mathematics and Artificial Intelligence.

[135]  Jeffrey Horn,et al.  Handbook of evolutionary computation , 1997 .

[136]  Patrick Siarry,et al.  A survey on optimization metaheuristics , 2013, Inf. Sci..

[137]  Thomas Stützle,et al.  AClib: A Benchmark Library for Algorithm Configuration , 2014, LION.

[138]  Marco Dorigo,et al.  Ant colony optimization for continuous domains , 2008, Eur. J. Oper. Res..

[139]  Nikolaus Hansen,et al.  Invariance, Self-Adaptation and Correlated Mutations and Evolution Strategies , 2000, PPSN.

[140]  T. W. Anderson,et al.  Asymptotic Theory of Certain "Goodness of Fit" Criteria Based on Stochastic Processes , 1952 .

[141]  Pascal Kerschke,et al.  Single- and multi-objective game-benchmark for evolutionary algorithms , 2019, GECCO.

[142]  Bilel Derbel,et al.  Algorithm selection of anytime algorithms , 2020, GECCO.

[143]  Joshua D. Knowles,et al.  On metrics for comparing nondominated sets , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[144]  R. Lyndon While,et al.  A review of multiobjective test problems and a scalable test problem toolkit , 2006, IEEE Transactions on Evolutionary Computation.

[145]  Andries Petrus Engelbrecht,et al.  Analysis and classification of optimisation benchmark functions and benchmark suites , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[146]  Thiago Santos,et al.  A Convergence indicator for Multi-Objective Optimisation Algorithms , 2018, TEMA (São Carlos).

[147]  David J. Sheskin,et al.  Handbook of Parametric and Nonparametric Statistical Procedures , 1997 .

[148]  P. Suganthan,et al.  Problem Definitions and Evaluation Criteria for the CEC 2010 Competition on Constrained Real- Parameter Optimization , 2010 .

[149]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[150]  Jorge J. Moré,et al.  Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .

[151]  Abdullah Al Mamun,et al.  Evolutionary big optimization (BigOpt) of signals , 2015, 2015 IEEE Congress on Evolutionary Computation (CEC).

[152]  Mark S. Boddy,et al.  Solving Time-Dependent Planning Problems , 1989, IJCAI.

[153]  Robert E. Shannon,et al.  Design and analysis of simulation experiments , 1978, WSC '78.

[154]  M. Hansen,et al.  Evaluating the quality of approximations to the non-dominated set , 1998 .

[155]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[156]  Richard S. Barr,et al.  Network Reoptimization Algorithms: A Statistically Designed Comparison , 1993, INFORMS J. Comput..

[157]  Markus Wagner,et al.  Towards rigorous validation of energy optimisation experiments , 2020, GECCO.

[158]  Benjamin Doerr,et al.  Self-Adjusting Mutation Rates with Provably Optimal Success Rules , 2019, Algorithmica.

[159]  Dirk V. Arnold,et al.  Noisy Optimization With Evolution Strategies , 2002, Genetic Algorithms and Evolutionary Computation.

[160]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning , 1989, Oper. Res..

[161]  H. Lindman Analysis of variance in complex experimental designs , 1974 .

[162]  Leslie Pérez Cáceres,et al.  The irace package: Iterated racing for automatic algorithm configuration , 2016 .

[163]  Kenneth de Jong Parameter Setting in EAs: a 30 Year Perspective , 2007 .

[164]  Shigeyoshi Tsutsui,et al.  A Robust Solution Searching Scheme in Genetic Search , 1996, PPSN.

[165]  M. Bartlett Properties of Sufficiency and Statistical Tests , 1992 .

[166]  James McDermott,et al.  When and why metaheuristics researchers can ignore “No Free Lunch” theorems , 2019, ArXiv.

[167]  Mansooreh Mollaghasemi,et al.  Using genetic algorithms and an indifference-zone ranking and selection procedure under common random numbers for simulation optimisation , 2012, J. Simulation.

[168]  Marjan Mernik,et al.  Replication and comparison of computational experiments in applied evolutionary computing: Common pitfalls and guidelines to avoid them , 2014, Appl. Soft Comput..

[169]  Jack P. C. Kleijnen,et al.  Regression and Kriging metamodels with their experimental designs in simulation: A review , 2017, Eur. J. Oper. Res..

[170]  Alastair Smith,et al.  How not to do it , 2005 .

[171]  Pierre Hansen,et al.  Variable Neighborhood Search , 2018, Handbook of Heuristics.

[172]  Catherine C. McGeoch Feature Article - Toward an Experimental Method for Algorithm Simulation , 1996, INFORMS J. Comput..

[173]  Kate Smith-Miles,et al.  Measuring algorithm footprints in instance space , 2012, 2012 IEEE Congress on Evolutionary Computation.

[174]  Anne Auger,et al.  Performance evaluation of an advanced local search evolutionary algorithm , 2005, 2005 IEEE Congress on Evolutionary Computation.

[175]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[176]  Jürgen Branke,et al.  Creating Robust Solutions by Means of Evolutionary Algorithms , 1998, PPSN.

[177]  J. Neyman Contributions to the theory of statistics , 1956 .

[178]  Ofer M. Shir,et al.  Benchmarking discrete optimization heuristics with IOHprofiler , 2019, GECCO.

[179]  Kate Smith-Miles,et al.  Performance Analysis of Continuous Black-Box Optimization Algorithms via Footprints in Instance Space , 2016, Evolutionary Computation.

[180]  John W. Tukey,et al.  Exploratory Data Analysis. , 1979 .

[181]  Jason H. Moore,et al.  Benchmarking Manifold Learning Methods on a Large Collection of Datasets , 2020, EuroGP.

[182]  Jürgen Branke,et al.  Efficient fitness estimation in noisy environments , 2001 .

[183]  Kenneth DeJong,et al.  Parameter Setting in EAs: a 30 Year Perspective , 2007, Parameter Setting in Evolutionary Algorithms.

[184]  Anne Auger,et al.  Theory of Randomized Search Heuristics , 2012, Algorithmica.

[185]  Per Kristian Lehre,et al.  Black-Box Search by Unbiased Variation , 2010, GECCO '10.

[186]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[187]  Joseph C. Culberson,et al.  On the Futility of Blind Search: An Algorithmic View of No Free Lunch , 1998, Evolutionary Computation.

[188]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .

[189]  Thomas Bartz-Beielstein,et al.  A new Taxonomy of Continuous Global Optimization Algorithms , 2018, ArXiv.

[190]  Katharina Eggensperger,et al.  Towards an Empirical Foundation for Assessing Bayesian Optimization of Hyperparameters , 2013 .

[191]  Francisco Herrera,et al.  A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms , 2011, Swarm Evol. Comput..

[192]  Bruce L. Golden,et al.  Experimentation in optimization , 1986 .

[193]  Kalyanmoy Deb,et al.  Investigating the Effect of Imbalance Between Convergence and Diversity in Evolutionary Multiobjective Algorithms , 2017, IEEE Transactions on Evolutionary Computation.

[194]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[195]  Thomas Weise,et al.  Difficult features of combinatorial optimization problems and the tunable w-model benchmark problem for simulating them , 2018, GECCO.

[196]  Manuel López-Ibáñez,et al.  Ant colony optimization , 2010, GECCO '10.

[197]  John N. Hooker,et al.  Needed: An Empirical Science of Algorithms , 1994, Oper. Res..

[198]  Pablo San Segundo,et al.  Research trends in combinatorial optimization , 2020, Int. Trans. Oper. Res..

[199]  Qingfu Zhang,et al.  Approximating the Set of Pareto-Optimal Solutions in Both the Decision and Objective Spaces by an Estimation of Distribution Algorithm , 2009, IEEE Transactions on Evolutionary Computation.

[200]  Gary James Jason,et al.  The Logic of Scientific Discovery , 1988 .

[201]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[202]  Kent McClymont,et al.  Benchmark multi-objective optimisation test problems with mixed encodings , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[203]  Tome Eftimov,et al.  The impact of statistics for benchmarking in evolutionary computation research , 2018, GECCO.

[204]  Doug Hains,et al.  Hyperplane initialized local search for MAXSAT , 2013, GECCO '13.

[205]  Mauricio G. C. Resende,et al.  Designing and reporting on computational experiments with heuristic methods , 1995, J. Heuristics.

[206]  Olivier Teytaud,et al.  Variance Reduction for Better Sampling in Continuous Domains , 2020, PPSN.

[207]  Eric R. Ziegel,et al.  Probability and Statistics for Engineering and the Sciences , 2004, Technometrics.

[208]  Markus Wagner,et al.  Evolving diverse TSP instances by means of novel and creative mutation operators , 2019, FOGA '19.

[209]  Takuya Akiba,et al.  Optuna: A Next-generation Hyperparameter Optimization Framework , 2019, KDD.

[210]  A. E. Eiben,et al.  Evolutionary Algorithm Parameters and Methods to Tune Them , 2012, Autonomous Search.

[211]  Heike Trautmann,et al.  Automated Algorithm Selection: Survey and Perspectives , 2018, Evolutionary Computation.

[212]  J. Kleijnen Analyzing simulation experiments with common random numbers , 1988 .

[213]  N. Hansen,et al.  Real-Parameter Black-Box Optimization Benchmarking: Experimental Setup , 2010 .

[214]  H. Mühlenbein,et al.  From Recombination of Genes to the Estimation of Distributions I. Binary Parameters , 1996, PPSN.

[215]  Ameet Talwalkar,et al.  Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization , 2016, J. Mach. Learn. Res..

[216]  Thomas Stützle,et al.  Pareto Local Optimum Sets in the Biobjective Traveling Salesman Problem: An Experimental Study , 2004, Metaheuristics for Multiobjective Optimisation.

[217]  Anna Hart,et al.  Mann-Whitney test is not just a test of medians: differences in spread can be important , 2001, BMJ : British Medical Journal.

[218]  M. Braga,et al.  Exploratory Data Analysis , 2018, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[219]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[220]  ATSPDavid S. JohnsonAT Experimental Analysis of Heuristics for the Stsp , 2001 .

[221]  Alessandro Carosio,et al.  Eidgenössische Technische Hochschule in Zürich , 2006, Schweizerische Zeitschrift für Hydrologie.

[222]  R. Fletcher Conjugate gradient methods for indefinite systems , 1976 .

[223]  A. E. Eiben,et al.  A critical note on experimental research methodology in EC , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[224]  Michael D. Vose,et al.  Unbiased black box search algorithms , 2011, GECCO '11.

[225]  Markus Wagner,et al.  The Dynamic Travelling Thief Problem: Benchmarks and Performance of Evolutionary Algorithms , 2020, ICONIP.

[226]  Carlos A. Coello Coello,et al.  A Study of the Parallelization of a Coevolutionary Multi-objective Evolutionary Algorithm , 2004, MICAI.

[227]  Richard Craig Van Nostrand,et al.  Design of Experiments Using the Taguchi Approach: 16 Steps to Product and Process Improvement , 2002, Technometrics.

[228]  Olivier Teytaud,et al.  Versatile black-box optimization , 2020, GECCO.

[229]  Michèle Sebag,et al.  Analyzing bandit-based adaptive operator selection mechanisms , 2010, Annals of Mathematics and Artificial Intelligence.

[230]  John M. Mulvey,et al.  On Reporting Computational Experiments with Mathematical Software , 1979, TOMS.

[231]  Joerg joke Heitkoetter,et al.  The hitch-hiker''s guide to evolutionary computation , 2001 .

[232]  Mike Preuss Experimentation in Evolutionary Computation , 2015 .

[233]  Raymond Ros,et al.  Real-Parameter Black-Box Optimization Benchmarking 2009: Experimental Setup , 2009 .

[234]  Ivan Reinaldo Meneghini,et al.  Scalable and Customizable Benchmark Problems for Many-Objective Optimization , 2020, Appl. Soft Comput..

[235]  Thomas Stützle,et al.  An Empirical Assessment of the Properties of Inverted Generational Distance on Multi- and Many-Objective Optimization , 2017, EMO.

[236]  C. Stein,et al.  Estimation with Quadratic Loss , 1992 .

[237]  D. Shanno Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .

[238]  Mike Preuss,et al.  Experiments on metaheuristics: Methodological overview and open issues , 2007 .

[239]  Yoshua Bengio,et al.  Random Search for Hyper-Parameter Optimization , 2012, J. Mach. Learn. Res..

[240]  Jakob Bossek,et al.  Evolving Sampling Strategies for One-Shot Optimization Tasks , 2020, PPSN.

[241]  Hisao Ishibuchi,et al.  Modified Distance Calculation in Generational Distance and Inverted Generational Distance , 2015, EMO.

[242]  Jack P. C. Kleijnen Experimental Design for Sensitivity Analysis of Simulation Models , 2001 .

[243]  Saman K. Halgamuge,et al.  Exploratory Landscape Analysis of Continuous Space Optimization Problems Using Information Content , 2015, IEEE Transactions on Evolutionary Computation.

[244]  Hans-Georg Beyer,et al.  Benchmarking evolutionary algorithms for single objective real-valued constrained optimization - A critical review , 2018, Swarm Evol. Comput..

[245]  Thomas Bartz-Beielstein,et al.  the future of experimental research , 2009, GECCO '09.

[246]  Jason Brownlee,et al.  A note on research methodology and benchmarking optimization algorithms , 2007 .

[247]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[248]  Yann Chevaleyre,et al.  On Averaging the Best Samples in Evolutionary Computation , 2020, PPSN.

[249]  J. Neyman,et al.  INADMISSIBILITY OF THE USUAL ESTIMATOR FOR THE MEAN OF A MULTIVARIATE NORMAL DISTRIBUTION , 2005 .

[250]  Catherine A. Schevon,et al.  Optimization by simulated annealing: An experimental evaluation , 1984 .

[251]  Catherine C. McGeoch Experimental analysis of algorithms , 1986 .