DATA MINING IN MATERIALS DEVELOPMENT

Data Mining (DM) has become a powerful tool in a wide range of areas, from e-commerce, to finance, to bioinformatics, and increasingly, in materials science [1, 2]. Miners think about problems with a somewhat different focus than traditional scientists, and DM techniques offer the possibility of making quantitative predictions in many areas where traditional approaches have had limited success. Scientists generally try to make predictions through constitutive relations, derived mathematically from basic laws of physics, such as the diffusion equation or the ideal gas law. However, in many areas, including materials development, the problems are so complex that constitutive relations either cannot be derived, or are too approximate or intractable for practical quantitative use. The philosophy of a DM approach is to assume that useful constitutive relations exist, and to attempt to derive them primarily from data, rather than from basic laws of physics.

[1]  D. Fontaine Cluster Approach to Order-Disorder Transformations in Alloys , 1994 .

[2]  Information mining using artificial neural networks and "holographic research strategy" , 2003 .

[3]  Kohji Omata,et al.  Optimization of Catalyst for Methanol Synthesis by a Combinatorial Approach Using a Parallel Activity Test and Genetic Algorithm Assisted by a Neural Network , 2003 .

[4]  J. Nørskov,et al.  Combined electronic structure and evolutionary search approach to materials design. , 2002, Physical review letters.

[5]  Thomas R. Cundari,et al.  Design of a Propane Ammoxidation Catalyst Using Artificial Neural Networks and Genetic Algorithms , 2001 .

[6]  Mehmed Kantardzic,et al.  Data Mining: Concepts, Models, Methods, and Algorithms , 2002 .

[7]  Tadashi Hattori,et al.  Neural network as a tool for catalyst development , 1995 .

[8]  David J. C. MacKay,et al.  A Practical Bayesian Framework for Backpropagation Networks , 1992, Neural Computation.

[9]  Martin Holeňa,et al.  Feedforward neural networks in catalysis: A tool for the approximation of the dependency of yield on catalyst composition, and for knowledge extraction , 2003 .

[10]  I. D. Brown,et al.  The inorganic crystal structure data base , 1983, J. Chem. Inf. Comput. Sci..

[11]  Rolf Mülhaupt,et al.  The polyolefin challenges: catalyst and process design, tailor‐made materials, high‐throughput development and data mining , 2001 .

[12]  J. Gale,et al.  The prediction of inorganic crystal structures using a genetic algorithm and energy minimisation , 1999 .

[13]  J. E. Jackson A User's Guide to Principal Components , 1991 .

[14]  Martin Jansen,et al.  A concept for synthesis planning in solid-state chemistry. , 2002, Angewandte Chemie.

[15]  Manfred Baerns,et al.  An evolutionary approach in the combinatorial selection and optimization of catalytic materials , 2000 .

[16]  Krishna Rajan,et al.  Secondary descriptor development for zeolite framework design: an informatics approach , 2003 .

[17]  菊池 潮美 Cohesion in Metals, Transition Metal alloys, F.R.de Boer,R.Boom,W.C.M.Mattens,A.R.Miedema,A.K.Niessen(共著), F.R de boer,D.G.pettifor編Cohesion and Structure Vol.1, 1989年, North-Holland発行, 23×15.5cm, 758ページ, Dfl.250 , 1990 .

[18]  Steve R. Gunn,et al.  Adaptive Numerical Modelling of Commercial Aluminium Plate Performance , 2000 .

[19]  Steve R. Gunn,et al.  Data driven knowledge extraction of materials properties , 1999, Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials. IPMM'99 (Cat. No.99EX296).

[20]  A. C. Rencher Methods of multivariate analysis , 1995 .

[21]  Ian Sinclair,et al.  Predicting the Structural Performance of Heat-Treatable Al-Alloys , 2000 .

[22]  Alex Zunger,et al.  First-Principles Statistical Mechanics of Semiconductor Alloys and Intermetallic Compounds , 1994 .

[23]  L. Harmon,et al.  Experiment planning for combinatorial materials discovery , 2003 .

[24]  W. Sha,et al.  Application of artificial neural networks for modelling correlations in titanium alloys , 2004 .

[25]  Michael H. Kutner Applied Linear Statistical Models , 1974 .

[26]  Peter Claus,et al.  High-throughput synthesis and screening of catalytic materials: Case study on the search for a low-temperature catalyst for the oxidation of low-concentration propane , 2001 .

[27]  D. Pettifor,et al.  The structures of binary compounds. I. Phenomenological structure maps , 1986 .

[28]  Nello Cristianini,et al.  An introduction to Support Vector Machines , 2000 .

[29]  Anthony F. Volpe,et al.  Applications of combinatorial methods in catalysis , 2001 .

[30]  Andrew J. Chalk,et al.  A Quantum Mechanical/Neural Net Model for Boiling Points with Error Estimation , 2001, J. Chem. Inf. Comput. Sci..

[31]  W. Sha,et al.  Software products for modelling and simulation in materials science , 2003 .

[32]  C. J. Harris,et al.  Data pre-processing/model initialisation in neurofuzzy modelling of structure-property relationships in Al-Zn-Mg-Cu alloys. (In, special issue on Application of Neural Network Analysis in Materials Science. Iron and Steel Institute of Japan) , 1999 .

[33]  Yoh-Han Pao,et al.  Analysis and visualization of category membership distribution in multivariate data , 2000 .

[34]  David J. C. MacKay,et al.  Estimation of mechanical properties of ferritic steel welds. Part 1: Yield and tensile strength , 2000 .

[35]  Stefano Curtarolo,et al.  Accuracy of ab initio methods in predicting the crystal structures of metals: A review of 80 binary alloys , 2005, cond-mat/0502465.

[36]  Venkat Venkatasubramanian,et al.  Catalyst design: knowledge extraction from high-throughput experimentation , 2003 .

[37]  F. D. Boer Cohesion in Metals: Transition Metal Alloys , 1989 .

[38]  Kristin A. Persson,et al.  Predicting crystal structures with data mining of quantum calculations. , 2003, Physical review letters.

[39]  H. K. D. H. Bhadeshia,et al.  Neural Networks in Materials Science , 1999 .

[40]  J. Rodgers,et al.  CRYSTMET: a database of the structures and powder patterns of metals and intermetallics. , 2002, Acta crystallographica. Section B, Structural science.

[41]  A. van de Walle,et al.  The Alloy Theoretic Automated Toolkit: A User Guide , 2002 .

[42]  Manfred Baerns,et al.  Fundamental and combinatorial approaches in the search for and optimisation of catalytic materials for the oxidative dehydrogenation of propane to propene , 2001 .

[43]  Alex Zunger,et al.  The inverse band-structure problem of finding an atomic configuration with given electronic properties , 1999, Nature.

[44]  Gerbrand Ceder,et al.  Predicting Properties from Scratch , 1998, Science.

[45]  David Cebon,et al.  Materials Selection in Mechanical Design , 1992 .

[46]  Michael Lappe,et al.  A fully automatic evolutionary classification of protein folds: Dali Domain Dictionary version 3 , 2001, Nucleic Acids Res..

[47]  David Mackay,et al.  Probable networks and plausible predictions - a review of practical Bayesian methods for supervised neural networks , 1995 .

[48]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[49]  Thomas Bligaard,et al.  Pareto-optimal alloys , 2003 .

[50]  H. K. D. H. Bhadeshia,et al.  Estimation of the amount of retained austenite in austempered ductile irons using neural networks , 2001 .

[51]  Alex Zunger,et al.  Structural complexity in binary bcc ground states: The case of bcc Mo-Ta , 2004 .

[52]  Prediction of surface hardness after ferritic nitrocarburising of steels using artificial neural networks , 2001 .

[53]  Margaret H. Dunham,et al.  Data Mining: Introductory and Advanced Topics , 2002 .

[54]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[55]  Wei Sha,et al.  Application of artificial neural network for prediction of time-temperature-transformation diagrams in titanium alloys , 2000 .

[56]  Nong Ye,et al.  The Handbook of Data Mining , 2003 .

[57]  Pierre Villars,et al.  The Structures of Binary Compounds , 1990 .

[58]  Knut Baumann,et al.  Cross-validation as the objective function for variable-selection techniques , 2003 .

[59]  Jouko Yliruusi,et al.  Prediction of physicochemical properties based on neural network modelling. , 2003, Advanced drug delivery reviews.

[60]  Jan M. Zytkow,et al.  Handbook of Data Mining and Knowledge Discovery , 2002 .

[61]  Dan Braha,et al.  Data Mining for Design and Manufacturing , 2001, Massive Computing.

[62]  A. Goldberger A course in econometrics , 1991 .

[63]  S. Wold,et al.  The Collinearity Problem in Linear Regression. The Partial Least Squares (PLS) Approach to Generalized Inverses , 1984 .

[64]  Josef Honerkamp,et al.  High-Output Polymer Screening: Exploiting Combinatorial Chemistry and Data Mining Tools in Catalyst and Polymer Development† , 2003 .

[65]  Huang Kai,et al.  Catalyst design for methane oxidative coupling by using artificial neural network and hybrid genetic algorithm , 2003 .

[66]  D. G. Pettifor,et al.  A chemical scale for crystal-structure maps , 1984 .

[67]  Martin T. Hagan,et al.  Neural network design , 1995 .

[68]  Estefania Argente,et al.  Can artificial neural networks help the experimentation in catalysis , 2003 .

[69]  David J. C. MacKay,et al.  Estimation of mechanical properties of ferritic steel welds. Part 2: Elongation and Charpy toughness , 2000 .

[70]  E. Chong,et al.  Introduction to optimization , 1987 .

[71]  David J. C. MacKay,et al.  Neural network model of creep strength of austenitic stainless steels , 2002 .

[72]  S. Malinov,et al.  Simulation of microhardness profiles for nitrocarburized surface layers by artificial neural network , 2001 .

[73]  Gerbrand Ceder,et al.  Automatic construction, implementation and assessment of Pettifor maps , 2003 .

[74]  H. K. D. H. Bhadeshia,et al.  Design of Ferritic Creep-resistant Steels , 2001 .

[75]  J. Edward Jackson,et al.  A User's Guide to Principal Components: Jackson/User's Guide to Principal Components , 2004 .

[76]  S. D. Jong SIMPLS: an alternative approach to partial least squares regression , 1993 .

[77]  Claude Mirodatos,et al.  How to Design Diverse Libraries of Solid Catalysts , 2003 .

[78]  Hyeran Byun,et al.  Applications of Support Vector Machines for Pattern Recognition: A Survey , 2002, SVM.

[79]  Wei Sha,et al.  Modelling the correlation between processing parameters and properties in titanium alloys using artificial neural network , 2000 .

[80]  William H. Press,et al.  Numerical recipes in C , 2002 .