A linear time algorithm for the reverse 1-median problem on a cycle

This article deals with the reverse 1-median problem on graphs with positive vertex weights. The problem is proved to be strongly NP-hard even in the case of bipartite graphs and not approximable within a constant factor (unless P = NP). Furthermore, a linear time algorithm for the reverse 1-median problem on a cycle with linear cost functions (RMC) is developed. It is also shown that there exists an integral optimal solution of RMC if the input data are integral. © 2006 Wiley Periodicals, Inc. NETWORKS, Vol. 48(1), 16-23 2006

[1]  Oded Berman,et al.  Improving the location of minisum facilities through network modification , 1993, Ann. Oper. Res..

[2]  Zhenhong Liu,et al.  Some reverse location problems , 2000, Eur. J. Oper. Res..

[3]  Rainer E. Burkard,et al.  Inverse median problems , 2004, Discret. Optim..

[4]  Rainer E. Burkard,et al.  Bottleneck Capacity Expansion Problems with General Budget Constraints , 2001, RAIRO Oper. Res..

[5]  Cynthia A. Phillips,et al.  The network inhibition problem , 1993, STOC.

[6]  R. Ravi,et al.  Approximation Algorithms for Certain Network Improvement Problems , 1998, J. Comb. Optim..

[7]  Rainer E. Burkard,et al.  Weight reduction problems with certain bottleneck objectives , 2004, Eur. J. Oper. Res..

[8]  Madhav V. Marathe,et al.  Modifying Edges of a Network to Obtain Short Subgraphs , 1998, Theor. Comput. Sci..

[9]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[10]  Delbert Ray Fulkerson,et al.  Maximizing the minimum source-sink path subject to a budget constraint , 1977, Math. Program..

[11]  Oded Berman,et al.  Improving the location of minimax facilities through network modification , 1994, Networks.

[12]  Mao-cheng Cai,et al.  The Complexity Analysis of the Inverse Center Location Problem , 1999, J. Glob. Optim..

[13]  Clemens Heuberger,et al.  Inverse Combinatorial Optimization: A Survey on Problems, Methods, and Results , 2004, J. Comb. Optim..

[14]  Roberto Solis-Oba,et al.  Increasing the weight of minimum spanning trees , 1996, SODA '96.