Effective allele preservation by offspring selection: an empirical study for the TSP

The basic selection ideas of the different representatives of evolutionary algorithms are sometimes quite diverse. The selection concept of Genetic Algorithms (GAs) and Genetic Programming (GP) is basically realised by the selection of above-average parents for reproduction, whereas Evolution Strategies (ES) use the fitness of newly evolved offspring as the basis for selection (survival of the fittest due to birth surplus). This contribution considers aspects of population genetics and ES in order to propose an enhanced and generic selection model for GAs which is able to preserve the alleles which are part of a high quality solution. Some selected aspects of these enhanced techniques are discussed exemplarily on the basis of the Travelling Salesman Benchmark (TSP) problem instances.

[1]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[2]  Michael Affenzeller,et al.  Reconsidering the Selection Concept of Genetic Algorithms from a Population Genetics Inspired Point of View , 2004 .

[3]  Stephan M. Winkler,et al.  HeuristicModeler: A Multi-Purpose Evolutionary Machine Learning Algorithm and its Applications in Medical Data Analysis , 2006 .

[4]  Michael Affenzeller,et al.  SASEGASA: A New Generic Parallel Evolutionary Algorithm for Achieving Highest Quality Results , 2004, J. Heuristics.

[5]  Michael Affenzeller,et al.  HeuristicLab: A Generic and Extensible Optimization Environment , 2005 .

[6]  Zbigniew Michalewicz,et al.  Genetic algorithms + data structures = evolution programs (3rd ed.) , 1996 .

[7]  Pedro Larrañaga,et al.  Genetic Algorithms for the Travelling Salesman Problem: A Review of Representations and Operators , 1999, Artificial Intelligence Review.

[8]  Stephan M. Winkler,et al.  Advanced Genetic Programming Based Machine Learning , 2007, J. Math. Model. Algorithms.

[9]  S. Domek,et al.  A generic evolutionary computation approach based upon genetic algorithms and evolution strategies , 2002 .

[10]  Stephan M. Winkler,et al.  Genetic Algorithms and Genetic Programming - Modern Concepts and Practical Applications , 2009 .

[11]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[12]  David B. Fogel,et al.  An introduction to simulated evolutionary optimization , 1994, IEEE Trans. Neural Networks.

[13]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .

[14]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[15]  Eberhard Schöneburg,et al.  Genetische Algorithmen und Evolutionsstrategien - eine Einführung in Theorie und Praxis der simulierten Evolution , 1994 .

[16]  D. J. Cavicchio,et al.  Adaptive search using simulated evolution , 1970 .

[17]  Gabriel Kronberger,et al.  Simulation optimization with heuristiclab , 2008 .

[18]  Michael Affenzeller,et al.  SASEGASA: An Evolutionary Algorithm for Retarding Premature Convergence by Self-adaptive Selection Pressure Steering , 2003, IWANN.

[19]  Stephan M. Winkler,et al.  New methods for the identification of nonlinear model structures based upon genetic programming techniques , 2005 .

[20]  Gerhard Reinelt,et al.  TSPLIB - A Traveling Salesman Problem Library , 1991, INFORMS J. Comput..

[21]  Michael Affenzeller A GENERIC EVOLUTIONARY COMPUTATION APPROACH BASED UPON GENETIC ALGORITHMS AND EVOLUTION STRATEGIES , 2003 .

[22]  Michael Affenzeller,et al.  Segregative Genetic Algorithms (SEGA): A hybrid superstructure upwards compatible to genetic algorithms for retarding premature convergence , 2001, Int. J. Comput. Syst. Signals.