Quantum epistemology from subquantum ontology: quantum mechanics from theory of classical random fields

The scientific methodology based on two descriptive levels, ontic (reality as it is ) and epistemic (observational), is briefly presented. Following Schrodinger, we point to the possible gap between these two descriptions. Our main aim is to show that, although ontic entities may be inaccessible for observations, they can be useful for clarification of the physical nature of operational epistemic entities. We illustrate this thesis by the concrete example: starting with the concrete ontic model preceding quantum mechanics (the latter is treated as an epistemic model), namely, prequantum classical statistical field theory (PCSFT), we propose the natural physical interpretation for the basic quantum mechanical entity - the quantum state ("wave function"). The correspondence PCSFT to QM is not straightforward, it couples the covariance operators of classical (prequantum) random fields with the quantum density operators. We use this correspondence to clarify the physical meaning of the pure quantum state and the superposition principle - by using the formalism of classical field correlations.

[1]  M. Katsnelson,et al.  Quantum theory as the most robust description of reproducible experiments: application to a rigid linear rotator , 2013, Optics & Photonics - Optical Engineering + Applications.

[2]  Harald Atmanspacher,et al.  Determinism Is Ontic, Determinability is Epistemic , 2001 .

[3]  R. N. Schouten,et al.  Experimental loophole-free violation of a Bell inequality using entangled electron spins separated by 1.3 km , 2015, 1508.05949.

[4]  Giacomo Mauro D'Ariano Physics as Information Processing , 2010 .

[5]  Caslav Brukner,et al.  Information and Fundamental Elements of the Structure of Quantum Theory , 2002, quant-ph/0212084.

[6]  Harald Atmanspacher,et al.  Epistemic and Ontic Quantum Realities , 2003 .

[7]  Andrei Khrennikov,et al.  Foundations of Probability and Physics , 2002 .

[8]  J. Bell,et al.  Speakable and Unspeakable in Quatum Mechanics , 1988 .

[9]  Robert W. Spekkens,et al.  Einstein, Incompleteness, and the Epistemic View of Quantum States , 2007, 0706.2661.

[10]  A. Khrennikov New experimental tests of the photon’s indivisibility , 2012 .

[11]  Antony Valentini,et al.  Beyond the Quantum , 2009, 1001.2758.

[12]  Contextual approach to quantum mechanics and the theory of the fundamental prespace , 2003, quant-ph/0306003.

[13]  Christopher A. Fuchs Delirium Quantum Or, where I will take quantum mechanics if it will let me , 2007 .

[14]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.

[15]  Kristel Michielsen,et al.  Quantum theory as a description of robust experiments: Derivation of the Pauli equation , 2015, 1504.04944.

[16]  A. Zeilinger,et al.  Speakable and Unspeakable in Quantum Mechanics , 1989 .

[17]  G. D’Ariano,et al.  Probabilistic theories with purification , 2009, 0908.1583.

[18]  Leslie E Ballentine,et al.  Limitations of the projection postulate , 1990 .

[19]  A. Zeilinger A Foundational Principle for Quantum Mechanics , 1999, Synthese Library.

[20]  Andrei Khrennikov,et al.  Entanglement's dynamics from classical stochastic process , 2009 .

[21]  O. Maroney How statistical are quantum states , 2012, 1207.6906.

[22]  Arkady Plotnitsky,et al.  Reading Bohr: Physics and Philosophy , 2006 .

[23]  Louis de Broglie,et al.  The current interpretation of wave mechanics : a critical study , 1964 .

[24]  Masanori Ohya,et al.  Classical signal model for quantum channels , 2010, 1008.3772.

[25]  Shellee D. Dyer,et al.  A strong loophole-free test of local realism , 2015 .

[26]  Giacomo Mauro D'Ariano,et al.  Operational Axioms for Quantum Mechanics , 2006, quant-ph/0611094.

[27]  Armen E. Allahverdyan,et al.  72 57 v 1 [ qu an tph ] 2 8 M ar 2 01 3 Statistical theory of ideal quantum measurement processes , 2014 .

[28]  H. C. Donker,et al.  Logical inference approach to relativistic quantum mechanics : Derivation of the Klein-Gordon equation , 2016, 1604.07265.

[29]  A. Khrennikov Prequantum Classical Statistical Field Theory: Simulation of Probabilities of Photon Detection with the Aid of Classical Brownian Motion , 2014, 1412.8036.

[30]  Gerard 't Hooft,et al.  On the free-will postulate in Quantum Mechanics , 2007 .

[31]  Ruediger Schack,et al.  Quantum-Bayesian Coherence , 2009, 1301.3274.

[32]  Andrei Khrennikov,et al.  Subquantum nonlocal correlations induced by the background random field , 2011 .

[33]  L. Ballentine,et al.  Quantum mechanics , 1989 .

[34]  Andrei Khrennikov,et al.  Prequantum Classical Statistical Field Theory: Complex Representation, Hamilton-Schrödinger Equation, and Interpretation of Stationary States , 2006 .

[35]  A. Khrennikov Detection Model Based on Representation of Quantum Particles by Classical Random Fields: Born’s Rule and Beyond , 2008, 0805.1511.

[36]  Andrei Khrennikov,et al.  Generalizations of Quantum Mechanics Induced by Classical Statistical Field Theory , 2005 .

[37]  Andrei Khrennikov,et al.  Interpretations of Probability , 1999 .

[38]  De Broglie’s Initial Conception of De Broglie Waves , 1984 .

[39]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .

[40]  The Bild Conception of Physical Theory: Helmholtz, Hertz, and Schrödinger , 2004 .

[41]  A. Einstein,et al.  The Evolution of Physics: The Growth of Ideas from the Early Concepts to Relativity and Quanta , 1938 .

[42]  L. Ballentine Quantum mechanics : a modern development , 1998 .

[43]  A. Khrennikov Born’s formula from statistical mechanics of classical fields and theory of hitting times , 2014 .

[44]  C. Fuchs Quantum Mechanics as Quantum Information (and only a little more) , 2002, quant-ph/0205039.

[45]  Andrei Khrennikov Probability and Randomness: Quantum Versus Classical , 2016 .

[46]  M. Leifer,et al.  Maximally epistemic interpretations of the quantum state and contextuality. , 2012, Physical review letters.

[47]  Leslie E Ballentine,et al.  The statistical interpretation of quantum mechanics , 1970 .

[48]  Jörn Beyer,et al.  A significant-loophole-free test of Bell's theorem with entangled photons , 2017, Security + Defence.

[49]  Schrödinger An Undulatory Theory of the Mechanics of Atoms and Molecules , 1926 .

[50]  R. Balian,et al.  Statistical theory of ideal quantum measurement processes , 2015 .

[51]  Armen E. Allahverdyan,et al.  Understanding quantum measurement from the solution of dynamical models , 2011, 1107.2138.

[52]  Andrei Khrennikov,et al.  A pre-quantum classical statistical model with infinite-dimensional phase space , 2005, quant-ph/0505228.

[53]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[54]  Philippe Grangier Contextual objectivity: a realistic interpretation of quantum mechanics , 2000 .

[55]  Ruediger Schack,et al.  QBism and the Greeks: why a quantum state does not represent an element of physical reality , 2014, 1412.4211.

[56]  Arkady Plotnitsky,et al.  Niels Bohr and Complementarity: An Introduction , 2012 .

[57]  Prequantum Classical Statistical Field Theory: Simulation of Probabilities of Photon Detection from Brownian Motion Interacting with Threshold Detectors , 2015 .

[58]  Andrei Khrennikov Quantum theory: Reconsideration of foundations , 2003 .

[59]  H. Atmanspacher,et al.  Extrinsic and Intrinsic Irreversibility in Probabilistic Dynamical Laws , 2001 .

[60]  Gerard 't Hooft,et al.  The Cellular Automaton Interpretation of Quantum Mechanics , 2014, 1405.1548.