The global distribution of ecosystems in a world without fire.

This paper is the first global study of the extent to which fire determines global vegetation patterns by preventing ecosystems from achieving the potential height, biomass and dominant functional types expected under the ambient climate (climate potential). To determine climate potential, we simulated vegetation without fire using a dynamic global-vegetation model. Model results were tested against fire exclusion studies from different parts of the world. Simulated dominant growth forms and tree cover were compared with satellite-derived land- and tree-cover maps. Simulations were generally consistent with results of fire exclusion studies in southern Africa and elsewhere. Comparison of global 'fire off' simulations with landcover and treecover maps show that vast areas of humid C(4) grasslands and savannas, especially in South America and Africa, have the climate potential to form forests. These are the most frequently burnt ecosystems in the world. Without fire, closed forests would double from 27% to 56% of vegetated grid cells, mostly at the expense of C(4) plants but also of C(3) shrubs and grasses in cooler climates. C(4) grasses began spreading 6-8 Ma, long before human influence on fire regimes. Our results suggest that fire was a major factor in their spread into forested regions, splitting biotas into fire tolerant and intolerant taxa.

[1]  J. Pereira,et al.  Vegetation burning in the year 2000: Global burned area estimates from SPOT VEGETATION data , 2004 .

[2]  Christie Allan,et al.  The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna , 2003 .

[3]  H. Linder,et al.  The radiation of the Cape flora, southern Africa , 2003, Biological reviews of the Cambridge Philosophical Society.

[4]  P. J. Myerscough Flammable Australia. The Fire Regimes and Biodiversity of a Continent , 2003 .

[5]  F. I. Woodward,et al.  The importance of low atmospheric CO2 and fire in promoting the spread of grasslands and savannas , 2003 .

[6]  Gareth Nelson,et al.  Australian biogeographical connections and the phylogeny of large genera in the plant family Myrtaceae , 2003 .

[7]  Sandy P. Harrison,et al.  Climate and CO2 controls on global vegetation distribution at the last glacial maximum: analysis based on palaeovegetation data, biome modelling and palaeoclimate simulations , 2003 .

[8]  W. Hoffmann,et al.  Comparative growth analysis of tropical forest and savanna woody plants using phylogenetically independent contrasts , 2003 .

[9]  J. Keeley,et al.  Evolution of CAM and C4 Carbon‐Concentrating Mechanisms , 2003, International Journal of Plant Sciences.

[10]  A. Mather,et al.  Global Forest Resources Assessment 2000 Main Report: FAO Forestry Paper 140, FAO, Rome, 2001, xxvii+479pp, price $40.00, ISBN 92 5 104642-5, ISSN 0258-6150 , 2003 .

[11]  F. Woodward,et al.  What controls South African vegetation — climate or fire? , 2003 .

[12]  J. Dodson,et al.  The fire history of south-west Western Australia prior to European settlement in 1826-1829 , 2003 .

[13]  S. Sitch,et al.  Simulating fire regimes in human‐dominated ecosystems: Iberian Peninsula case study , 2002 .

[14]  F. Chapin,et al.  Principles of Terrestrial Ecosystem Ecology , 2002, Springer New York.

[15]  Robert J. Marquis,et al.  6. Vegetation Physiognomies and Woody Flora of the Cerrado Biome , 2002 .

[16]  L. Scott Microscopic charcoal in sediments: Quaternary fire history of the grassland and savanna regions in South Africa , 2002 .

[17]  James S. Clark,et al.  A history of fire in Australia , 2002 .

[18]  R. Sage Environmental and Evolutionary Preconditions for the Origin and Diversification of the C4 Photosynthetic Syndrome , 2001 .

[19]  F. Woodward,et al.  Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models , 2001 .

[20]  Susan E. Lee,et al.  Predicting the Future Productivity and Distribution of Global Terrestrial Vegetation , 2001 .

[21]  Andrea Perlis,et al.  Global forest resources assessment 2000 : main report , 2001 .

[22]  F. Woodward,et al.  Vegetation and the terrestrial carbon cycle:Modelling the first 400 million years , 2001 .

[23]  Harold A. Mooney,et al.  Terrestrial Global Productivity , 2001 .

[24]  A. Scott The Pre-Quaternary history of fire , 2000 .

[25]  A. Kershaw Australian Rainforests: Islands of Green in a Land of Fire , 2000 .

[26]  David W. Peterson,et al.  FIRE SUPPRESSION AND ECOSYSTEM CARBON STORAGE , 2000 .

[27]  D. Richardson Ecology and Biogeography of Pinus , 2000 .

[28]  R. Scholes,et al.  Impact of fire frequency on woody community structure and soil nutrients in the Kruger National Park , 2000 .

[29]  A. Moreira Effects of fire protection on savanna structure in Central Brazil , 2000 .

[30]  S. Jacobs,et al.  Grasses: Systematics and Evolution , 2000 .

[31]  David M. J. S. Bowman,et al.  Australian Rainforests: Islands of Green in a Land of Fire , 2000 .

[32]  E. Dwyer,et al.  Characterization of the spatio‐temporal patterns of global fire activity using satellite imagery for the period April 1992 to March 1993 , 2000 .

[33]  J. Townshend,et al.  Global land cover classi(cid:142) cation at 1 km spatial resolution using a classi(cid:142) cation tree approach , 2004 .

[34]  J. Everett,et al.  Grasses in North America: a geographic perspective. , 2000 .

[35]  Jose M. Cardoso Pereira,et al.  An assessment of vegetation fire in Africa (1981–1991): Burned areas, burned biomass, and atmospheric emissions , 1999 .

[36]  G. Polis,et al.  Why Are Parts of the World Green? Multiple Factors Control Productivity and the Distribution of Biomass , 1999 .

[37]  W. Hoffmann FIRE AND POPULATION DYNAMICS OF WOODY PLANTS IN A NEOTROPICAL SAVANNA: MATRIX MODEL PROJECTIONS , 1999 .

[38]  Werner A. Kurz,et al.  A 70-YEAR RETROSPECTIVE ANALYSIS OF CARBON FLUXES IN THE CANADIAN FOREST SECTOR , 1999 .

[39]  J. José,et al.  Carbon stocks and fluxes in a temporal scaling from a savanna to a semi-deciduous forest , 1998 .

[40]  J. Ogden,et al.  BOTANICAL BRIEFING Fire, Forest Regeneration and Links with Early Human Habitation: Evidence from New Zealand , 1998 .

[41]  D. Richardson Forestry Trees as Invasive Aliens , 1998 .

[42]  J. Keeley,et al.  Evolution of life histories in Pinus , 1998 .

[43]  Dwyer Edward,et al.  A Global Analysis of Vegetation Fires Using Satellite Images: Spatial and Temporal Dynamics. , 1998 .

[44]  J. Deckers,et al.  World Reference Base for Soil Resources , 1998 .

[45]  R. Scholes,et al.  Tree-grass interactions in Savannas , 1997 .

[46]  J. Ehleringer,et al.  C4 photosynthesis, atmospheric CO2, and climate , 1997, Oecologia.

[47]  J. Ehleringer,et al.  Global vegetation change through the Miocene/Pliocene boundary , 1997, Nature.

[48]  J. A. Ratter,et al.  The Brazilian Cerrado Vegetation and Threats to its Biodiversity , 1997 .

[49]  Richard M. Cowling,et al.  Vegetation of southern Africa , 1997 .

[50]  M. Fenton,et al.  ELEPHANTS, WOODLANDS AND BIODIVERSITY IN SOUTHERN AFRICA , 1997 .

[51]  I. C. Prentice,et al.  BIOME3: An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types , 1996 .

[52]  C. Justice,et al.  A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS. Part II: The Generation of Global Fields of Terrestrial Biophysical Parameters from Satellite Data , 1996 .

[53]  D. Maitre,et al.  Invasive plants and water resources in the Western Cape Province, South Africa: modelling the consequences of a lack of management. , 1996 .

[54]  B. W. Wilgen,et al.  Fire and Plants , 1995, Population and Community Biology Series.

[55]  E. Medina,et al.  Determinants of Tropical Savannas , 1996 .

[56]  C. H. Gimingham,et al.  The Ecology of Fire. , 1996 .

[57]  Thomas M. Smith,et al.  A global land primary productivity and phytogeography model , 1995 .

[58]  D. Bowman,et al.  Munmarlary revisited: Response of a north Australian Eucalyptus tetrodonta savanna protected from fire for 20 years , 1995 .

[59]  O. W. Archibold Ecology of World Vegetation , 1994, Springer Netherlands.

[60]  J. Townshend,et al.  NDVI-derived land cover classifications at a global scale , 1994 .

[61]  C. Justice,et al.  The generation of global fields of terrestrial biophysical parameters from the NDVI , 1994 .

[62]  C. Justice,et al.  A global 1° by 1° NDVI data set for climate studies derived from the GIMMS continental NDVI data , 1994 .

[63]  Robert J. Scholes,et al.  Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide , 1993 .

[64]  David M. J. S. Bowman,et al.  Factors that control monsoon-rainforest seedling establishment and growth in north Australian Eucalyptus savanna , 1993 .

[65]  J. Proctor,et al.  Nature and Dynamics of Forest-Savanna Boundaries. , 1994 .

[66]  E. Johnson VEGETATION DYNAMICS : STUDIES FROM THE NORTH AMERICAN BOREAL FOREST , 1993 .

[67]  P. Vitousek,et al.  Biological invasions by exotic grasses, the grass/fire cycle, and global change , 1992 .

[68]  C. Herrera,et al.  Historical Effects and Sorting Processes as Explanations for Contemporary Ecological Patterns: Character Syndromes in Mediterranean Woody Plants , 1992, The American Naturalist.

[69]  M. Swaine,et al.  The effects of fire exclusion on savanna vegetation at Kpong, Ghana , 1992 .

[70]  David M. J. S. Bowman,et al.  Response of a monsoon forest‐savanna boundary to fire protection, Weipa, northern Australia , 1991 .

[71]  P. Manders Fire and other variables as determinants of forest/fynbos boundaries in the Cape Province , 1990 .

[72]  N. Stephenson Climatic Control of Vegetation Distribution: The Role of the Water Balance , 1990, The American Naturalist.

[73]  The Role of Fire in the Tropical Lowland Deciduous Forests of Asia , 1990 .

[74]  L. Coutinho,et al.  Fire in the Ecology of the Brazilian Cerrado , 1990 .

[75]  Johann G. Goldammer,et al.  Fire in the Tropical Biota , 1990, Ecological Studies.

[76]  P. Stott THE FOREST AS PHOENIX: TOWARDS A BIOGEOGRAPHY OF FIRE IN MAINLAND SOUTH EAST ASIA , 1988 .

[77]  M. Cole The savannas , 1987 .

[78]  F. Woodward Climate and plant distribution , 1987 .

[79]  B. Walker,et al.  The Savannas: Biogeography and Geobotany. , 1987 .

[80]  M. Kellman Synergistic relationships between fire and low soil fertility in neotropical savannas: a hypothesis. , 1984 .

[81]  W. Platt,et al.  Ecology of Fire , 1984 .

[82]  N. M. Tainton,et al.  Ecological Effects of Fire in South African Ecosystems , 1984, Ecological Studies.

[83]  P. Jewell,et al.  Ecosystems of the World, 13: Tropical Savannas. , 1984 .

[84]  J. Leonard,et al.  The Vegetation of Africa , 1984 .

[85]  J. José,et al.  Changes in Tree Density and Species Composition in a Protected Trachypogon Savanna, Venezuela , 1983 .

[86]  C. H. Gimingham,et al.  Mediterranean-Type Ecosystems: The Role of Nutrients , 1983 .

[87]  E. Matthews Global Vegetation and Land Use: New High-Resolution Data Bases for Climate Studies , 1983 .

[88]  R. Specht,et al.  Mediterranean-Type Heathlands and Sclerophyllous Shrublands of the World: An Overview , 1983 .

[89]  B. Huntley,et al.  Ecology of Tropical Savannas , 1987, Ecological Studies.

[90]  R. Bell The Effect of Soil Nutrient Availability on Community Structure in African Ecosystems , 1982 .

[91]  L. Coutinho,et al.  Ecological Effects of Fire in Brazilian Cerrado , 1982 .

[92]  H. Mooney Convergent evolution in Chile and California : Mediterranean climate ecosystems , 1979 .

[93]  G. Eiten The Vegetation of the Serra do Roncador , 1975 .

[94]  A. Gill Fire and The Australian Flora: A Review , 1975 .

[95]  R. Battistini,et al.  Biogeography and Ecology in Madagascar , 1974, Monographiae Biologicae.

[96]  T. Kennan effects of fire on two vegetation types at Matopos, Rhodesia , 1972 .

[97]  J. Koechlin Flora and Vegetation of Madagascar , 1972 .

[98]  R. Whittaker Communities and Ecosystems , 1975 .

[99]  I. Hiscock Communities and Ecosystems , 1970, The Yale Journal of Biology and Medicine.

[100]  R. Specht A comparison of the sclerophyllous vegetation characteristic of mediterranean type climates in france california and southern australia i structure morphology and succession , 1969 .

[101]  R. Specht A comparison of the sclerophyllous vegetation characteristic of Mediterranean type climates in France, California, and Southern Australia. II. Dry matter, energy, and nutrient accumulation , 1969 .

[102]  W. Hartley Studies on the origin, evolution and distribution of the Gramineae. IV. The genus Poa L , 1961 .

[103]  L. Slobodkin,et al.  Community Structure, Population Control, and Competition , 1960, The American Naturalist.

[104]  C. G. Trapnell Ecological Results of Woodland and Burning Experiments in Northern Rhodisia , 1959 .

[105]  W Hartley,et al.  Studies on the origin, evolution and distribution of the Gramineae. I. The tribe Andropogoneae , 1958 .

[106]  John Phillip Harison. Acocks,et al.  Veld types of South Africa. , 1955 .

[107]  L. Holdridge Determination of World Plant Formations From Simple Climatic Data. , 1947, Science.

[108]  J. S. Beard,et al.  Climax Vegetation in Tropical America , 1944 .