Differential Effects of Viewpoint on Object-Driven Activation in Dorsal and Ventral Streams

[1]  Ravi S. Menon,et al.  Haptic study of three-dimensional objects activates extrastriate visual areas , 2002, Neuropsychologia.

[2]  R. Henson,et al.  Multiple levels of visual object constancy revealed by event-related fMRI of repetition priming , 2002, Nature Neuroscience.

[3]  N. Kanwisher,et al.  Neuroimaging of cognitive functions in human parietal cortex , 2001, Current Opinion in Neurobiology.

[4]  C. Büchel,et al.  Surface orientation discrimination activates caudal and anterior intraparietal sulcus in humans: an event-related fMRI study. , 2001, Journal of neurophysiology.

[5]  Alex Martin,et al.  Long-lasting cortical plasticity in the object naming system , 2000, Nature Neuroscience.

[6]  I. Gauthier,et al.  Visual priming: The ups and downs of familiarity , 2000, Current Biology.

[7]  Ravi S. Menon,et al.  The effects of visual object priming on brain activation before and after recognition , 2000, Current Biology.

[8]  K. Grill-Spector,et al.  The dynamics of object-selective activation correlate with recognition performance in humans , 2000, Nature Neuroscience.

[9]  R. Badgaiyan,et al.  Neuroanatomical organization of perceptual memory: An fMRI study of picture priming , 2000, Human brain mapping.

[10]  E. Halgren,et al.  Dynamic Statistical Parametric Mapping Combining fMRI and MEG for High-Resolution Imaging of Cortical Activity , 2000, Neuron.

[11]  T. Shallice,et al.  Neuroimaging evidence for dissociable forms of repetition priming. , 2000, Science.

[12]  Leslie G. Ungerleider,et al.  Complementary neural mechanisms for tracking items in human working memory. , 2000, Science.

[13]  S. Edelman,et al.  Differential Processing of Objects under Various Viewing Conditions in the Human Lateral Occipital Complex , 1999, Neuron.

[14]  Heinrich H Bülthoff,et al.  Image-based object recognition in man, monkey and machine , 1998, Cognition.

[15]  Alex Martin,et al.  Properties and mechanisms of perceptual priming , 1998, Current Opinion in Neurobiology.

[16]  D. Schacter,et al.  Priming and the Brain , 1998, Neuron.

[17]  A. Dale,et al.  Functional-Anatomic Correlates of Object Priming in Humans Revealed by Rapid Presentation Event-Related fMRI , 1998, Neuron.

[18]  M. Tarr,et al.  Levels of categorization in visual recognition studied using functional magnetic resonance imaging , 1997, Current Biology.

[19]  I Biederman,et al.  Neurocomputational bases of object and face recognition. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[20]  H. Sakata,et al.  The TINS Lecture The parietal association cortex in depth perception and visual control of hand action , 1997, Trends in Neurosciences.

[21]  M. Tarr,et al.  Becoming a “Greeble” Expert: Exploring Mechanisms for Face Recognition , 1997, Vision Research.

[22]  B. Gordon,et al.  Object shape processing in the visual system evaluated using functional MRI , 1997, Neurology.

[23]  G. Rizzolatti,et al.  Evidence for visuomotor priming effect , 1996, Neuroreport.

[24]  Josh H. McDermott,et al.  Functional imaging of human visual recognition. , 1996, Brain research. Cognitive brain research.

[25]  Karl J. Friston,et al.  The neural regions sustaining object recognition and naming , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[26]  R. Malach,et al.  Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Daniel L. Schacter,et al.  Brain regions associated with retrieval of structurally coherent visual information , 1995, Nature.

[28]  Heinrich H. Bülthoff,et al.  Image-based object recognition , 1995 .

[29]  I. Biederman,et al.  Recognizing depth-rotated objects: evidence and conditions for three-dimensional viewpoint invariance. , 1993, Journal of experimental psychology. Human perception and performance.

[30]  Ravi S. Menon,et al.  Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. , 1993, Biophysical journal.

[31]  F M Miezin,et al.  Activation of the hippocampus in normal humans: a functional anatomical study of memory. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[32]  J. Sergent,et al.  Functional neuroanatomy of face and object processing. A positron emission tomography study. , 1992, Brain : a journal of neurology.

[33]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[34]  M. Corbetta,et al.  Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  G W Humphreys,et al.  Varieties of Object Constancy , 1989, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[36]  J. Talairach,et al.  Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging , 1988 .

[37]  R. Cabeza,et al.  Imaging Cognition II: An Empirical Review of 275 PET and fMRI Studies , 2000, Journal of Cognitive Neuroscience.

[38]  Narendra Ahuja,et al.  Learning to recognize objects , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[39]  M J Tarr,et al.  Orientation-specific possibility priming for novel three-dimensional objects , 1999, Perception & psychophysics.

[40]  E. Halgren,et al.  Location of human face‐selective cortex with respect to retinotopic areas , 1999, Human brain mapping.

[41]  S. Edelman,et al.  Human Brain Mapping 6:316–328(1998) � A Sequence of Object-Processing Stages Revealed by fMRI in the Human Occipital Lobe , 2022 .

[42]  Isabel Gauthier,et al.  Levels of categorization in visual recognition studied with functional MRI , 1997 .

[43]  M Jeannerod,et al.  Visual pathways for object-oriented action and object recognition: functional anatomy with PET. , 1997, Cerebral cortex.

[44]  Nk Logothetis,et al.  Image-based Object Recognition. , 1994 .