Mass and Cost Model for Selecting Thruster Size in Electric Propulsion Systems

A model of system mass and life-cycle costs is used to determine the optimal number of thrusters for electric propulsion systems. The model is generalized for application with most electric propulsion systems and then applied to high-power Hall thruster systems in particular. Mass and cost models were constructed for individual thruster strings using as inputs the number of active thrusters, the number of redundant thrusters, and the total system power. Mass and cost are related through the launch cost of the propulsion-system mass, which unifies the optimization to a single global parameter based on cost. Fault-tolerance and string cost are driving factors determining the optimum thruster size for a given system-power level. After considering factors such as fault-tolerance, cost uncertainty, complexity, ground-test-vacuum-facility limitations, previously demonstrated power capabilities, and possible technology limitations, the development of two thrusters to flight status is suggested: a low-power model...

[1]  Nathan J. Strange,et al.  300-kW Solar Electric Propulsion System Configuration for Human Exploration of Near-Earth Asteroids , 2011 .

[2]  A. Mathers,et al.  Demonstration of 10,400 Hours of Operation on a 4.5 kW Qualification Model Hall Thruster , 2010 .

[3]  A. Semenkin,et al.  Bismuth propellant option for very high power TAL thruster , 2002 .

[4]  Alec D. Gallimore,et al.  Far-Field Plume Measurements of a Nested-Channel Hall-Effect Thruster (PREPRINT) , 2010 .

[5]  I. Mikellides,et al.  Magnetic Shielding of the Channel Walls in a Hall Plasma Accelerator , 2011 .

[6]  Steven R. Oleson,et al.  The Prometheus 1 spacecraft preliminary electric propulsion system design , 2005 .

[7]  James M. Haas,et al.  Air Force Research Laboratory high power electric propulsion technology development , 2010, 2010 IEEE Aerospace Conference.

[8]  John Ziemer,et al.  Delivery of Colloid Micro-Newton Thrusters for the Space Technology 7 Mission , 2008 .

[9]  David Y. Oh Evaluation of Solar Electric Propulsion Technologies for Discovery Class Missions , 2007 .

[10]  Gani B. Ganapathi,et al.  Performance of the Xenon Feed System on Deep Space One , 2000 .

[11]  Robert D. Braun,et al.  Propulsive options for a manned Mars transportation system , 1991 .

[12]  Marc D. Rayman,et al.  Design of the First Interplanetary Solar Electric Propulsion Mission , 2002 .

[13]  Alec D. Gallimore,et al.  Krypton Performance Optimization in High-Voltage Hall Thrusters , 2006 .

[14]  Alec D. Gallimore,et al.  The Effects of Cathode Configuration on Hall Thruster Cluster Plume Properties (PREPRINT) , 2005 .

[15]  Radford Byerly,et al.  Shuttle programme lifetime cost , 2011, Nature.

[16]  John R. Brophy,et al.  Development and Testing of the Dawn Ion Propulsion System , 2006 .

[17]  Hani Kamhawi,et al.  A Commercial One Newton Hall Effect Thruster for High Power In-Space Missions , 2011 .

[18]  John Steven Snyder,et al.  Evaluation of a 4.5 kW Commercial Hall Thruster System for NASA Science Missions , 2006 .

[19]  Alec D. Gallimore,et al.  Plasma Properties Downstream of a Low-Power Hall Thruster (POSTPRINT) , 2005 .

[20]  David H. Manzella,et al.  The Performance and Wear Characterization of a High-Power High-Isp NASA Hall Thruster , 2005 .

[21]  James Szabo,et al.  Light Metal Propellant Hall Thrusters , 2009 .

[22]  Damon Landau,et al.  Analysis of System Margins on Deep Space Missions Utilizing Solar Electric Propulsion , 2008 .

[23]  Alec D. Gallimore,et al.  Characterizing Vacuum Facility Backpressure Effects on the Performance of a Hall Thruster , 2001 .

[24]  Dean R. Massey,et al.  Development of a Magnesium and Zinc Hall-effect Thruster , 2010 .

[25]  James E. Polk,et al.  Asteroid Return Mission Feasibility Study , 2011 .

[26]  David Y. Oh,et al.  Three-Axis Electric Propulsion Attitude Control System with a Dual-Axis Gimbaled Thruster , 2011 .

[27]  Monika Auweter-Kurtz,et al.  Flexible Piloted Mars Missions Using Continuous Electric Propulsion , 2006 .

[28]  Benjamin Donahue,et al.  Solar Electric and Nuclear Thermal Propulsion Architectures for Human Mars Missions Beginning In 2033 , 2010 .

[29]  Marc D. Rayman,et al.  Coupling of system resource margins through the use of electric propulsion: Implications in preparing for the Dawn mission to Ceres and Vesta , 2007 .

[30]  Alec D. Gallimore,et al.  Hall Thruster Cluster Operation with a Shared Cathode , 2007 .

[31]  David H. Manzella,et al.  Investigation of Low Voltage/High Thrust Hall Thruster Operation , 2003 .

[32]  Dean Richard Massey,et al.  Development of a direct evaporation bismuth Hall thruster , 2008 .

[33]  Marc D. Rayman,et al.  In-Flight Operation of the Dawn Ion Propulsion System Through Orbit Capture at Vesta , 2011 .

[34]  Brian E. Beal,et al.  Plasma Properties in the Plume of a Hall Thruster Cluster , 2004 .

[35]  Nathan J. Strange,et al.  Human Missions to Phobos and Deimos Using Combined Chemical and Solar Electric Propulsion , 2011 .

[36]  J. E. Polk,et al.  NSTAR Xenon Ion Thruster on Deep Space 1: Ground and flight tests (invited) , 2000 .

[37]  T. P. Wright,et al.  Factors affecting the cost of airplanes , 1936 .

[38]  Hani Kamhawi,et al.  An Overview of Hall Thruster Development at NASA's John H. Glenn Research Center , 2005 .

[39]  Damon Landau,et al.  Electric Propulsion System Selection Process for Interplanetary Missions , 2011 .

[40]  James E. Polk,et al.  Lifetime Qualification Standard for Electric Thrusters , 2009 .

[41]  Robert S. Jankovsky,et al.  Laboratory Model 50 kW Hall Thruster , 2002 .

[42]  David H. Manzella,et al.  50 KW Class Krypton Hall Thruster Performance , 2003 .

[43]  James E. Polk,et al.  Lifetime Qualification Standards for Electric Thrusters for Deep-Space Missions , 2008 .

[44]  David H. Manzella,et al.  NASA's 2004 Hall Thruster Program , 2013 .

[45]  R. Branam,et al.  Performance Evaluation of an Iodine-Vapor Hall Thruster , 2012 .

[46]  Robert S. Jankovsky,et al.  High-specific impulse Hall thrusters, part 1: Influence of current density and magnetic field , 2006 .

[47]  Dan M. Goebel,et al.  Simplified Ion Thruster Xenon Feed System for NASA Science Missions , 2009 .