Drop Distribution Determination in a Liquid-Liquid Dispersion by Image Processing

This paper presents the implementation of an algorithm for automatic identification of drops with different sizes in monochromatic digitized frames of a liquid-liquid chemical process. These image frames were obtained at our Laboratory, using a nonintrusive process, with a digital video camera, a microscope, and an illumination setup from a dispersion of toluene in water within a transparent mixing vessel. In this implementation, we propose a two-phase approach, using a Hough transform that automatically identifies drops in images of the chemical process. This work is a promising starting point for the possibility of performing an automatic drop classification with good results. Our algorithm for the analysis and interpretation of digitized images will be used for the calculation of particle size and shape distributions for modelling liquid-liquid systems.