Accelerated GCRO-DR method for solving sequences of systems of linear equations

By recycling some error approximations generated during a previous cycle of iterations, we present a technique for improving the convergence of GCRO-DR. The scheme is able to mitigate the occurrence of small skip angles occurring in GCRO-DR, and thus considerably accelerates the convergence. The alternative phenomenon of the residual vectors is examined numerically, and the effectiveness of the new method is illustrated by several examples from practical applications.

[1]  K. Burrage,et al.  Restarted GMRES preconditioned by deflation , 1996 .

[2]  Arne S. Gullerud,et al.  MPI-based implementation of a PCG solver using an EBE architecture and preconditioner for implicit, 3-D finite element analysis , 2001 .

[3]  Eric de Sturler,et al.  The iterative solution of a sequence of linear systems arising from nonlinear finite element analysis , 2005 .

[4]  Y. Saad,et al.  Deflated and Augmented Krylov Subspace Techniques , 1997 .

[5]  K. Chen,et al.  Matrix preconditioning techniques and applications , 2005 .

[6]  Misha Elena Kilmer,et al.  Recycling Subspace Information for Diffuse Optical Tomography , 2005, SIAM J. Sci. Comput..

[7]  Ronald B. Morgan,et al.  GMRES WITH DEFLATED , 2008 .

[8]  Ronald B. Morgan,et al.  A Restarted GMRES Method Augmented with Eigenvectors , 1995, SIAM J. Matrix Anal. Appl..

[9]  Wolfgang Fichtner,et al.  Improving the Accuracy of GMRes with Deflated Restarting , 2007, SIAM J. Sci. Comput..

[10]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[11]  Elizabeth R. Jessup,et al.  A Technique for Accelerating the Convergence of Restarted GMRES , 2005, SIAM J. Matrix Anal. Appl..

[12]  Andreas Frommer,et al.  BiCGStab(ℓ) for Families of Shifted Linear Systems , 2003, Computing.

[13]  Cornelis Vuik,et al.  GMRESR: a family of nested GMRES methods , 1994, Numer. Linear Algebra Appl..

[14]  Andreas Frommer,et al.  Restarted GMRES for Shifted Linear Systems , 1998, SIAM J. Sci. Comput..

[15]  E. Sturler,et al.  Truncation Strategies for Optimal Krylov Subspace Methods , 1999 .

[16]  Gene H. Golub,et al.  Adaptively Preconditioned GMRES Algorithms , 1998, SIAM J. Sci. Comput..

[17]  Oliver G. Ernst,et al.  Analysis of acceleration strategies for restarted minimal residual methods , 2000 .

[18]  John G. Lewis,et al.  Sparse matrix test problems , 1982, SGNM.

[19]  R. Freund Solution of shifted linear systems by quasi-minimal residual iterations , 1993 .

[20]  Michael K. Ng,et al.  Galerkin Projection Methods for Solving Multiple Linear Systems , 1999, SIAM J. Sci. Comput..

[21]  Luc Giraud,et al.  Flexible GMRES with Deflated Restarting , 2010, SIAM J. Sci. Comput..

[22]  S. Gratton,et al.  Incremental spectral preconditioners for sequences of linear systems , 2007 .

[23]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[24]  K. Burrage,et al.  On the Performance of Various Adaptive Preconditioned GMRES Strategies , 1998 .

[25]  Tony F. Chan,et al.  Analysis of Projection Methods for Solving Linear Systems with Multiple Right-Hand Sides , 1997, SIAM J. Sci. Comput..

[26]  Eric de Sturler,et al.  Recycling Krylov Subspaces for Sequences of Linear Systems , 2006, SIAM J. Sci. Comput..

[27]  Valeria Simoncini,et al.  Recent computational developments in Krylov subspace methods for linear systems , 2007, Numer. Linear Algebra Appl..

[28]  E. Sturler,et al.  Nested Krylov methods based on GCR , 1996 .